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Summary

1. Complete sampling of all dimensions of biodiversity is a formidable task, even for small areas. Undersampling

is the norm, and the underquantification of diversity is a common outcome. Estimators of taxon diversity (TD)

are widely used to correct for undersampling. Yet, no similar strategy has been developed for phylogenetic (PD)

or functional (FD) diversity.

2. We propose three ways of estimating PD and FD, building on estimators originally developed for TD: (i) cor-

recting PD and FD values based on the completeness of TD; (ii) fitting asymptotic functions to accumulation

curves of PD andFD; and (iii) adapting nonparametric estimators to PD andFDdata.

3. Using trees as a common framework for the estimation of PD and FD, we tested the approachwith European

mammal andAzores Islands arthropod data.We demonstrated that different methods were able to considerably

reduce the undersampling bias and often correctly estimated true diversity using a fraction of the samples neces-

sary to reach complete sampling.

4. Besides the utility of knowing the true diversity of an assemblage from incomplete samples, the use of estima-

tors may present further advantages. For instance, comparisons between sites or time periods are possible only if

either sampling is complete or sampling effort is equivalent and sufficient to allow sensible comparisons. Also, as

PD and FD asymptote faster than TD, comparisons between these different dimensions may require unbiased

values. The framework now proposed combines taxon, phylogenetic and functional diversity into a single frame-

work, offering a tool for future developments involving these different facets of biological diversity.

Key-words: accumulation curves, alpha diversity, arthropods, Azores, European mammals,

extrapolation, functional diversity, nonparametric estimators, phylogenetic diversity, sampling bias

Introduction

From scales as small as a single tree, which can house thou-

sands of species (Erwin 1982), to the entire planet, which is

home to millions (Mora et al. 2011), we are always far from

being able to count every single species from most groups.

Even studies restricted in space, time and taxonomic scope face

intractable problemswhen trying to reach complete lists of spe-

cies (Cardoso 2009; Coddington et al. 2009). As species rich-

ness increases with the number of individuals or samples,

observed richness almost invariably underestimates true rich-

ness (Coddington et al. 2009).

The problem of undersampling and consequent bias in

diversity descriptors has long been recognised as both ubiqui-

tous and fundamental to correct. Without complete invento-

ries of communities, comparisons of species richness cannot be

reliably made if one does not consider the sampling effort or

completeness attained (Gotelli & Colwell 2001). Many

researchers address this concern by estimating alpha diversity

using techniques that adjust for sampling effort or complete-

ness (Longino, Colwell & Coddington 2002). The same

problems have been identified for beta diversity, since underes-

timation of similarity also occurs because of the failure to

account for unseen shared species (Chao et al. 2000, 2005;

Cardoso, Borges & Veech 2009). However, the same attention

given to taxon diversity (TD) bias due to undersampling and

how to correct it has never been given to other facets of biodi-

versity, namely phylogenetic diversity (PD) and functional

diversity (FD).

Taxon diversity is the most common measure of biodiver-

sity, usually expressed in terms of species richness where alpha

or gamma diversity is concerned. However, underlying the use

of TD is the simplistic assumption that the taxa are equally dis-

tinct from one another, disregarding the fact that communities

are composed of species with different evolutionary histories

and a diverse array of ecological functions. Thus, the last dec-

ade has seen a growing interest in complementary representa-

tions of biodiversity, including PD and FD (Devictor et al.

2010; Cardoso et al. 2014).*Correspondence author. E-mail: pedro.cardoso@helsinki.fi
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Phylogenetic diversity takes evolutionary relationships

between taxa into account (Faith 1992) and reflects how much

evolutionary history is behind the species constituting the com-

munities. Assemblages with identical TD may be considerably

different with respect to their evolutionary past, depending on

how far the species diverge from their nearest common ances-

tor (Webb et al. 2002; Graham & Fine 2008). PD has been

measured based on phylogenetic trees or cladograms, reflecting

the amount of phylogenetic information conveyed by the

assemblage (Faith 1992). Related measures reflecting the

degree of (un)relatedness of taxa have also been proposed

(Webb et al. 2002; but see Helmus et al. 2007 for alternative

measures).

Functional diversity quantifies components of biodiversity

that influence how an ecosystem operates or functions (Til-

man et al. 2001). We refer here to FD as the amount of bio-

logical functions or traits displayed by the species occurring

in given assemblages. This takes into account that species

often overlap in their traits, and as such, their relations may

be depicted much in the same way as species are related in a

phylogenetic framework. Communities with completely dif-

ferent species composition may be characterised by low vari-

ation in functional traits, with unrelated species replacing

others with similar roles in the network. FD has also been

quantified in many different ways, such as quadratic entropy

(Rao 1982), dendrogram-based measures (Petchey & Gaston

2002, 2006) or the functional hypervolume occupied by taxa

(Cornwell, Schwilk & Ackerly 2006; Vill!eger, Mason &

Mouillot 2008).

Despite the wide recognition that TD is often underesti-

mated and that estimators are frequently needed to correct for

bias, few studies have been made to verify whether the same

problems are present in PD or FD measures (Walker, Poos &

Jackson 2008; Ricotta et al. 2012) and, more importantly, no

estimators have been proposed to date. In this study, we focus

on the estimation of the alpha component of TD, PD and FD,

although beta diversity will probably require a similar

approach. Threemain strategies have been followed in the past

to estimate species richness (TD) from incomplete samples

(Sober!on&Llorente 1993; Colwell &Coddington 1994; Long-

ino, Colwell & Coddington 2002; Gotelli & Colwell 2011): (i)

fitting the log-normal distribution to species abundance data

and estimating the part of the distribution to the left of the veil

line; (ii) fitting asymptotic curves to randomised accumulation

curves; and (iii) using nonparametric estimators based on the

abundance or incidence of rare species. After hundreds of pub-

lished tests withmany different data sets, some of these alterna-

tives were found to perform generally better (although still far

from perfect), namely the latter two (Longino, Colwell &

Coddington 2002; Walther & Moore 2005). In this study, we

adapt some of the mostly used and best-performing species

richness (i.e. TD) estimators to PD and FD measures and test

their accuracy and ability to correct for undersampling bias

with a variety of theoretical and empirical data sets. We show

that different methods can be successfully used for estimating

PD and FD, with a wide application to all kinds of organisms

and sampling schemes.

Materials andmethods

Two kinds of data may be used for estimating diversity: (i) abundance

data, which may or may not be divided by sample, and (ii) incidence

data, that is, the presence or absence of each species in each sample.

From such data, a number of approaches for estimating true diversity

are possible.

ESTIMATION OF TAXON DIVERSITY

Here, we will focus on two of the mostly used and promising methods.

If indeed PD and FD accumulate with effort (often a measure of space

or time) in the same fashion as TD, then the approaches used to esti-

mate TD will be useful, albeit with possible adaptations, for PD and

FD.

Fitting asymptotic curves

Usually sampling is not instantaneous, that is, features (species – TD,

clades – PD and traits –FD) accumulate with the increasing number of

individuals or samples (Fig. 1). If at first the accumulation is fast, as

most features are yet to be sampled, the accumulation rate constantly

decreases, as an increasing number of features are already sampled and

it becomes harder to find novelty. Because the accumulation is not ran-

dom, butmade in a stepwise way, after randomisation of the accumula-

tion process, it is possible to fit asymptotic curves to the data points

and calculate the asymptote, which should approximate the true total

diversity (observed plus non-observed).

One of themostly used equations is the Clench orMichaelis–Menten

curve:

Sobs ¼
aQ

1þ bQ

where Sobs = observed richness,Q = number of samples (x-axis) and a

and b are fitting parameters. After finding these parameters, the asymp-

tote, that is, estimated richness (S*), is:

Fig. 1. Randomised accumulation of diversity with increasing effort
(dots), a fitted asymptotic equation (continuous line) and its asymptote
representing true diversity (dashed line).
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S# ¼ a

b

Other equations have been tested with variable success (e.g. negative

exponential,Weibull; Sober!on&Llorente 1993; Flather 1996).

Nonparametric estimators

Nonparametric estimators, based on the abundance or incidence of

rare species, are often considered the best option for estimating species

richness with most data sets (Gotelli & Colwell 2011). Among the first

to be suggested for this purpose and still the mostly used are the jack-

knife (Heltshe & Forrester 1983) and Anne Chao’s formulas (Chao

1984, 1987). The jackknife 1 based on abundance data is:

S# ¼ Sobs þ S1

where S1 = singletons, that is, the number of species known from a sin-

gle individual in the samples.

Its incidence data equivalent further includes a correction factor and

is:

S# ¼ Sobs þQ1
Q$ 1

Q

! "

whereQ1 = uniques, that is, the number of species known from a single

sample.

The Chao 1 (Chao 1984) is also based on the abundance of rare

species:

S# ¼ Sobs þ
S1ðS1 $ 1Þ
2ðS2 þ 1Þ

where S2 = doubletons, that is, the number of species known from

exactly two individuals in the samples. A corresponding incidence esti-

mator is known as Chao 2 (Chao 1987) and is based on the presence of

rare species in samples:

S# ¼ Sobs þ
Q1ðQ1 $ 1Þ
2ðQ2 þ 1Þ

where Q2 = duplicates, that is, the number of species known from

exactly two samples.

Recently, Lopez et al. (2012) have proposed a correction factor

based on the percentage of singletons or uniques in the sampled uni-

verse, with the reasoning that this proportion (P) is directly correlated

with undersampling. Irrespective of the function, its correction for

abundance estimators is:

S#P ¼ S# 1þ S1

Sobs

! "2
 !

and for incidence estimators:

S#P ¼ S# 1þ Q1

Sobs

! "2
 !

Many other nonparametric estimators have been proposed to date,

but here we adapt these eight (four formulas, with and without P

correction) with the same reasoning being easily translated to other

methods.

MEASURES OF PHYLOGENETIC AND FUNCTIONAL

DIVERSITY

Phylogenetic diversity and FD sensu lato can be expressed in a large

variety of ways (Mouchet et al. 2010; Schleuter et al. 2010). All

measures may be divided into twomain groups. First, those that reflect

overall diversity or the amount of evolutionary history for PD and the

amount of functions for FD contained in a given community, which

may be called phylogenetic and functional richness, respectively. These

tend to increase with increasing number of taxa, as new taxa tend to

provide new branches in the phylogenetic or functional tree or occupy

new space in the functional hypervolume. Second, there are measures

that reflect average distance between taxa, which may be called phylo-

genetic or functional dispersion or differentiation (Webb et al. 2002;

Lalibert!e &Legendre 2010). These are often not influenced by the num-

ber of taxa, being largely insensitive to sampling effort (Weiher, Clarke

&Keddy 1998).

Given that estimates of PD and FD are especially useful for the

first group of measures and that our study aims to estimate PD and

FD in comparison with TD as measured by species richness, we will

focus on measures that capture the notion of richness. Therefore, in

the following sections, we will measure PD and FD as the sum of the

edge length of a phylogenetic or functional tree (Faith 1992; Petchey

& Gaston 2002), although other representations could be used, such

as functional hyperspace (see Schleuter et al. 2010; for other measures

of functional richness). Hereafter, PD refers to the standard definition

sensu Faith (1992) covering both a conventional root in the sense of

out-group and a common ancestor. Note that since TD can also be

visualised using a tree with each taxon linked directly to the root by

an edge of unit length (star tree), tree diagrams provide a common

basis for unequivocal estimation and comparison of TD, PD and FD

(Cardoso et al. 2014).

ESTIMATION OF PHYLOGENETIC AND FUNCTIONAL

DIVERSITY

Here, we propose three ways of estimating PD and FD, building on the

estimators originally developed for TD: first, correcting PD and FD

values based on the completeness of the taxon inventory; second, fitting

asymptotic functions to accumulation curves of PD and FD; and third,

adapting nonparametric estimators to PD andFDdata.

Correcting with taxon inventory completeness

Inventory completeness (sensu Sørensen, Coddington & Scharff 2002)

can be defined as:

c ¼ Sobs

S#

where S* is computedwith any of the availablemethods (estimators).

The most straightforward way to estimate PD and FD is probably

to: (i) compute both observed TD and PD or FD; (ii) compute taxon

inventory completeness as above; and (iii) correct observed PD or FD

with the completeness values:

D# ¼ Dobs

c

whereD* andDobs are PDor FD estimated and observed, respectively.

This approach should be particularly efficient if the sampling ismade

randomly along the phylogenetic or functional tree. If unique taxa in

either phylogenetic or functional terms are much rarer or more abun-

dant, or alternatively much harder or easier to sample than the rest of

the assemblage, the bias may be large. Very unique parts of the tree will

be disproportionally sampled compared with that remaining, and this

makes the correction of PD or FD values with TD completeness

difficult.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 452–461
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Fitting asymptotic curves

This approach follows the same strategy as for TD. The idea is to fit

asymptotic functions to randomised or analytical accumulation

curves of PD or FD values (see Nipperess & Matsen 2013 for an

analytical solution) and to use the asymptote value as the estimate.

A randomised curve is generated by taking 1, 2,. . ., n random sam-

ples, n being the total number of samples. For each sampling level,

the observed PD or FD is calculated as the branch length already

sampled from the global tree (with n samples). The randomisation

procedure is repeated a large number of times (we recommend at

least 1000 to guarantee smoothness of the curves) allowing obtaining

a mean PD or FD for each sampling level. In fact, the R package

picante (Kembel et al. 2010) includes a function, specaccum.psr, that

builds randomised accumulation curves for phylogenetic species rich-

ness, and software is also available to compute analytical curves

(pplacer suite – matsen.fhcrc.org/pplacer/ or David Nipperess’s R

functions – davidnipperess.blogspot.com.au). We propose to use

such curves to fit different asymptotic functions, such as the Clench,

negative exponential or Weibull.

Adapting nonparametric estimators

Here, we propose an adaptation based on phylogenetic or functional

trees. Given a tree (Fig. 2) that is progressively completed with the

accumulation of samples, singleton or doubleton edge length may be

calculated as the sum of length of edges represented by a single or two

individuals, respectively. Conversely, unique or duplicate edges may be

calculated as the sum of length of edges represented in a single or two

samples, respectively. Other abundance or incidence classes may be cal-

culated similarly. This way, many nonparametric estimators, including

the eight tested here, may be used to estimate PDor FD.

The adaptation of the jackknife estimators from TD to PD and FD

is straightforward and requires no further changes. As for the Chao

functions, because PD and FD are measured in real numbers, the use

of the original functions is not possible. If S1 is smaller than 1, the

numerator S1(S1–1) will be negative and the estimated diversity will be

smaller than the observed. The same is true forQ1. We propose to sub-

stitute these unit correction constants by the minimum branch length

of terminal branches found in the tree. This is in fact the minimum

value that S1 orQ1may take. This minimum value should exclude null

distances, as these do not bring any new information. Because in TD

the minimum distance is 1 (if TD is measured in a star tree of unit

length), it is possible to apply these generalisations of the original Chao

formulas to TD, PD or FD. In fact, if this minimum value changes

from 1 to close to 0, the formula seamlessly changes from the bias-cor-

rected to the classic form of the Chao estimators (Gotelli & Colwell

2011). TheChao 1 adaptation is:

S# ¼ Sobs þ
S1ðS1 $minÞ
2ðS2 þminÞ

;

where min = minimum taxon, phylogenetic or functional distance

between any two species, excluding null distances. The corresponding

Chao 2 adaptation is:

S# ¼ Sobs þ
Q1ðQ1 $minÞ
2ðQ2 þminÞ

Finally, it should be noted that usually nonparametric estimators

underestimate diversity when very few samples are used. For that rea-

son, it is common to calculate and plot accumulation curves for the esti-

mated values in addition to the usual observed diversity curves

(Sørensen, Coddington & Scharff 2002; Lopez et al. 2012). If the esti-

mator curve asymptotes, it may be a good indicator of estimator reli-

ability. In the case of the estimation of PD or FD, using real numbers

instead of integers (as in TD) means that depending on the particular

samples randomly chosen for building the accumulation curve, particu-

larly the first few samples, some of the estimates may reach unrealistic

values and these will disproportionately influence average estimates.

This is critical for the Chao estimators, as both use the number of dou-

bletons or duplicates in the denominator. Instead of using averages as

usual for TD accumulation curves, we propose to use medians when

plotting estimated PD or FD accumulation curves calculated with the

Chao estimators. This option should provide very similar values to

averaging in most cases, but avoids spurious inflation of estimates in

particular cases.

PERFORMANCE TESTING OF THE NEW ESTIMATORS

Two methods may be used to test the performance of the new estima-

tors. The first is to create artificial communities with a known number

of species, species abundance distribution and spatial distribution of

each species in a computer-simulated landscape. Artificial trees depict-

ing theoretical phylogenetic or functional relationships between species

must also be created for PD or FD analyses. Then individuals or plots

are randomly sampled, and these data are used to estimate diversity.

Estimators are compared based on their ability to recover true, known,

diversity (Brose,Martinez &Williams 2003).

The second method is to use empirical data from areas exhaustively

sampled, so that we may assume that the observed diversity is near the

real one. Random fractions of the data are extracted from the data set,

and these are used to estimate total diversity. Estimates are then com-

pared with known diversity (Colwell & Coddington 1994). Here, we

used bothmethods in performance testing.

All analyses were performed in the R statistical environment (R

Development Core Team 2013) using the vegan (Oksanen et al. 2011)

and spatstat (Baddeley & Turner 2005) packages. An R script to esti-

mate TD, PD and FD using the three proposed methods is given in the

Supporting Information (Estimate.r, Data S1).

Fig. 2. Hypothetical phylogenetic or functional tree (with total phylo-
genetic or functional diversity = 2'5) with three species and two sam-
ples with abundance of species per sample. S1 = singleton edges,
S2 = doubleton edges, S ≥ = edges represented by more than two indi-
viduals,Q1 = unique edges,Q2 = duplicate edges.
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Theoretical data sets

We created one artificial community with 10 000 individuals distrib-

uted in 100 species following a log-normal species abundance distribu-

tion. To simulate a phylogenetic or functional tree, we randomly

attributed 10 binary alleles/trait values to each species and from this

matrix built a dendrogramusingUPGMA(although any othermethod

could have been used, as this tree was purely random). The individuals

of each virtual species were then distributed in three simulated square

surfaces with varying levels of intraspecific interaction. This way species

followed aggregated, random or uniform (overdispersed) distributions

in space depending on whether interactions were positive, neutral or

negative, respectively. Next, we simulated the sampling of each of the

three communities by superimposing a 10 9 10 grid over each square,

each of the 100 cells being a sample. Finally, by randomising the order

of the samples 1000 times, we built randomised taxon and phyloge-

netic/functional diversity accumulation curves based on the sum of the

branch length and the respective estimated values for all levels of under-

sampling (from 1 to 99 samples).

Empirical data sets

We used two empirical data sets previously used by our team for beta

diversity partition (see Cardoso et al. 2014 for details). These are both

exhaustive, with known total diversity values and adequate phyloge-

netic and functional data, and represent very different organisms and

spatial scales.

The Atlas of European Mammals (Mitchell-Jones et al. 1999) pro-

vided the distribution of the 160 native mammals in Europe, east of

roughly 30°E, in a 50 9 50 km resolution. We built the phylogenetic

tree for these species by extracting the phylogenetic relationship from

the world-wide mammal supertree provided by Bininda-Emonds et al.

(2007). We tested the ability of the estimators to calculate the PD of all

native European mammals with increasing number of cells, how many

samples/cells would be needed to correctly estimate total European

mammal PD and how much of the bias of observed PD is eliminated.

Because no abundance data are available (and in fact would probably

be uninformative at this scale), we did not calculate abundance-based

estimators.

The North-Atlantic Azorean archipelago, with nine islands, presents

a mosaic of land uses, which replace the once almost homogeneous

cover of laurel forest (Cardoso et al. 2013). A total of 36 sites in the nat-

ural forests of Terceira Island were sampled for epigean arthropods

using 30 pitfall traps per site (Gaspar, Borges & Gaston 2008). Func-

tional characteristics related to resource use were collated for all the

arthropod species, and a functional tree was built (see Cardoso et al.

2014 for details). Based on the distribution of the 28 endemic species

sampled and the respective functional relationships in the global func-

tional dendrogram, we then calculated the overall FD that can be

found in natural forests.We tested the ability of the estimators to calcu-

late the true FD if instead of using 30 pitfall traps we had used anything

from 1 to 29 traps per site. We also calculated how many traps per site

would be needed to correctly estimate total FD and how much of the

bias inherent to observed diversity was eliminated.

Accuracymeasurement

The behaviour of the estimators and their ability to correct undersam-

pling bias can be tested in a number of different ways (Walther &

Moore 2005). To test the new estimators with the empirical data sets,

we used the scaledmean square error:

SMSE ¼ 1

A2Q

XQ

j¼1

ðSj $ AÞ2

where A = real total diversity and Sj = estimated diversity for the jth

sample. We chose this measure among the many possible options as it

is: (i) scaled to true diversity, so that similar absolute differences are

weighted according to how much they represent of the real value; (ii)

scaled to the number of samples, so that values are independent of sam-

ple size; (iii) squared, so that small, mostly meaningless fluctuations

around the true value are down-weighted; and (iv) independent of posi-

tive or negative deviation from the real value, as such differentiation is

usually not necessary. This value was calculated for both data sets,

using the sample numbers n/29 to n/21 (nine values) for the European

data set, so that the first, highly biased, part of the curve was heavily

weighted compared with the last, mostly unbiased, part of the curve,

and all 29 values for theAzorean data set.

Results

THEORETICAL DATA SETS

Fitting asymptotic curves

For illustrative purposes, we show the results of curve fitting

with only five samples (Fig. 3). Even with only 5% of the theo-

retical assemblages sampled, the percentage of observed spe-

cies is higher than 80% in all cases. However, most of the real-

world assemblages are aggregated, and this is, probably, the

worst-case scenario for sampling and estimation of diversity as

such assemblages require much more effort to be thoroughly

sampled than assemblages where species are randomly or uni-

formly distributed in space and hence much more accessible

when sampling effort concentrates in few sites or microhabi-

tats. But even in aggregated assemblages, the asymptote of the

Clench function reaches a value very close to the real.

Nonparametric estimators

In general, nonparametric estimators are capable of correcting

much of the bias of observed diversity, with a similar behav-

iour for taxon, phylogenetic or functional diversity (Fig. 4).

Their behaviour does, however, differ, with the jackknife for-

mulas for incidence data often overshooting with very few

samples and both the Jack and Chao formulas for abundance

data underestimating with aggregated communities. The adap-

tations here proposed for PD and FD are, however, at least as

efficient as the original formulations for TD.

EMPIRICAL DATA SETS

Phylogenetic diversity of Europeanmammals

For the nonparametric estimators, between 100 and 500 of the

2000 cells are needed to reach the true species richness (TD)

value (Fig. 5), with both jackknifes being particularly efficient.

For PD, the correction based on taxon inventory completeness

is remarkably efficient, with between 5 and 100 cells being

needed to reach the true values, with the P-corrected versions

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 452–461
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of estimators performing particularly well. The direct nonpara-

metric estimation approach requires about 100 cells for all

functions. The Clench curve clearly underperforms in all cases

compared with the nonparametric estimators. Regarding the

accuracy of the different methods, all estimators largely

reduced the bias of the observed values (Appendix S1, Table

S1, Supporting information).

Functional diversity of Azorean arthropods

In all cases the estimators predict higher diversity than effec-

tively observed in the 36 sampled sites, whichmay indicate that

in fact our sampled universe is still incomplete (Fig. 6). The

FD estimates based on TD completeness reach the asymptote

very quickly, at about five traps, while in all other cases about

15–20 samples (traps) are needed (Fig. 6). Regarding the accu-

racy, all estimators had rather similar abilities to correct bias,

although the Clench method seems to perform slightly better

(Appendix S1, Table S2, Supporting information). As the

SMSEvalues are based on the total observed diversity, and this

may be underestimated, these values should, however, be inter-

preted with caution.

Discussion

This study sought to explore the impact of undersampling on

observed TD, PD and FD and to adapt some of the mostly

used and best-performing species richness estimators to PD

andFDmeasures.

In general, the simple correction of observed PD or FDwith

taxon inventory completeness values seems to perform surpris-

ingly well. This approach even outperforms TD estimates, for

which the estimators were specifically built. This may be due to

two factors in combination. First, TD estimators are known to

consistently undercorrect with a low number of samples

(O’Hara 2005; Cardoso 2009; Lopez et al. 2012). Second,

observed PD and FD are intrinsically less biased than TDwith

a low number of samples, as the first taxa sampled add on aver-

age more diversity than the latter taxa, which should share

parts of the tree with the ones previously sampled. The two

effects combined mean that with a low number of samples, it is

possible to very effectively correct PD or FD values. This

would not be the case if species richness estimators were more

efficient with low sampling, in which case estimated PD or FD

would initially overshoot the true value.

Both asymptotic functions and nonparametric estimators

used for PD or FD seem to perform as well as for TD, for

which they were first created. Although results are variable,

this means that in many empirical data sets at least 70–80%
completeness is needed to have reliable estimates (Sørensen,

Coddington & Scharff 2002; Cardoso 2009). Reaching such

levels is, however, not guaranteed in many studies, particularly

when dealing with hyperdiverse taxa, such as most arthropods

(Coddington et al. 2009). Overall, better estimators are needed

Fig. 3. Randomised accumulation curves for observed diversity up to five samples (full black line) and the respective fittedClench functions extrapo-
lated up to 100 samples (dotted black line). Theoretical assemblages following aggregated, random and uniform spatial distributions were built, as
was a random phylogenetic/functional tree connecting all species (see text for details). The true diversity of the assemblages is also shown (full grey
line).
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for TD, PD and FD, but in all cases, the bias inherent to

observed diversity is in fact reduced, so their utility is certainly

confirmed.

We should also mention that we did not try adapting the

analytical estimators of unconditional variance existing for

accumulation curves of nonparametric formulas (Gotelli &

Fig. 4. Randomised accumulation curves for observed and estimated diversity. Theoretical assemblages following aggregated, random and uniform
spatial distributions were built, as was a random phylogenetic/functional tree connecting all species (see text for details). The true diversity of the
assemblages is also shown (target). Note that the x-axis is in log10 scale to facilitate comparisons with very low sampling levels. Sobs = observed
diversity, Jack 1 (P) abund = jackknife 1 estimator with abundance data, Jack 1(P) inc = Jackknife 1 estimator with incidence data, Chao 1(P) =
Chao estimator with abundance data, Chao 2(P) = Chao estimator with incidence data (P = P-corrected version for all Jack andChao formulas).

Fig. 5. Observed and estimated species richness (TD) and phylogenetic diversity (PD) of European mammals with the randomised accumulation of
cells in Europe. The curves in the middle panel were calculated correcting the observed PD values using the completeness of TD (see text for details).
The curves in the right panel were calculated either fitting the Clench asymptotic function to each point in the observed PD curve or using nonpara-
metric estimators. Note that the x-axis is in log10 scale to facilitate comparisons with very low sampling levels. Sobs = observed diversity,
Clench = fitted asymptotic curve, Jack 1(P) inc = Jackknife 1 estimator with incidence data, Chao 2(P) = Chao estimator with incidence data
(P = P-corrected version for both Jack andChao formulas).
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Colwell 2011). Only conditional variances are possible to cal-

culate, and these approach 0when all samples are included.

ALTERNATIVE METHODS

Although we have focused on asymptotic functions and non-

parametric estimators, taxa richness (TD) has been estimated

through other means. Asymptotic functions have been criti-

cised for not relying on a strong theoretical basis, being a

strictly phenomenological method. Different functions may fit

a curve equally well, yet results may vary dramatically

(Sober!on & Llorente 1993), and residuals often reveal that

many functions do not correctly fit curve shapes (O’Hara

2005). For these reasons, Gotelli & Colwell (2011) do not rec-

ommend themethod. Possible better alternatives exist (Colwell

et al. 2012), but these are probably much harder to adapt for

PD and FD.

Another often used approach for species richness estimation

is to fit a species abundance distribution to a truncated para-

metric distribution and estimate the portion to the left of the

‘veil line’. This unseen part of the distribution corresponds to

the undetected species. However, PD and FD do not follow

such theoretical abundance distributions. In fact, it would be

unclear to define what abundance is in this context.

GOING BEYOND DIVERSITY ESTIMATES

Besides the obvious appeal and utility of knowing the true

diversity of an assemblage from incomplete samples, the use of

estimators may present further advantages. Comparisons

between sites, regions and time periods are only possible if

either the sampling is complete, which often is not the case, or

the sampling effort is equivalent and sufficient enough to allow

sensible comparisons. The way this problem has been typically

Fig. 6. Observed and estimated taxon (TD) and functional (FD) diversity of endemic Azorean arthropods with the randomised accumulation of
traps. The curves in the middle panels were calculated correcting the observed FD values using the completeness of TD (see text for details). The
curves in the right panels were calculated either fitting theClench asymptotic function to each point in the observedFDcurve or using nonparametric
estimators. Sobs = observed diversity, Clench = fitted asymptotic curve, Jack 1(P) abund = jackknife 1 estimator with abundance data, Jack 1(P)
inc = jackknife 1 estimator with incidence data, Chao 1(P) = Chao estimator with abundance data, Chao 2(P) = Chao estimator with incidence
data (P =P-corrected version for all Jack andChao formulas).
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corrected is through rarefaction. Rarefaction allows the com-

parison of diversity among assemblages on an equal-effort

basis (Gotelli & Colwell 2001; Chao & Jost 2012). Rarefaction

of PDorFD, either through randomisation procedures or ana-

lytically (Walker, Poos & Jackson 2008; Ricotta et al. 2012;

Nipperess & Matsen 2013), is an alternative to estimation

when total diversity values are not needed, but the objective is

to compare different assemblages with similar effort. Rarefac-

tion does, however, prevent one from knowing true diversity

numbers; estimating these, if without significant bias, should

be a preferable option.

Another advantage of using estimated in lieu of observed or

rarefied diversity is clear in studies relating TD with either PD

or FD.Many studies try to measure the level of redundancy in

assemblages by comparing differences in TD between assem-

blages with respective differences in PD or FD (Mayfield et al.

2010; Gerisch et al. 2012; Whittaker et al. in press). However,

as seen (Appendix S1, Supporting information), PD and FD

are less biased than TD in the presence of undersampling. This

means that, due to pure sampling effects, phylogenetic or func-

tional redundancy may be underestimated in many cases, as

PD and FD may reach an asymptote much before TD. Obvi-

ously, this use of the estimators does prevent the application of

our first approach, the reliance on TD completeness values, as

all dimensions are corrected by the same proportion.

L IMITS AND FUTURE PERSPECTIVES

In this study, we choose to focus on trees or dendrograms, not

only because trees allow a straightforward adaptation of exist-

ing estimators but also because they allow the comparison of

TD, PD andFDunder the same representation (Cardoso et al.

2014). Although there is no other obvious alternative for PD,

the use of dendrograms to compute FD has been the subject of

strong debate (Schleuter et al. 2010). We emphasise that the

user needs to consider that the choice of the distance and the

clustering method may greatly affect the FD values obtained;

some publications and associated scripts are available to guide

the researcher in this process (Mouchet et al. 2008; M!erigot,

Durbec & Gaertner 2010). The framework proposed here can

also be adapted to other representations such as multidimen-

sional hypervolumes, a common representation for FD. It

should be noted, however, that the adaptation is not as

straightforward as with dendrograms. Due to the nature of the

calculation of convex-hull volumes, each sample may occupy a

relatively small portion of the functional space, yet when con-

sidering several samples simultaneously, the space in between

samples may be occupied, even when none of the samples indi-

vidually occupies it. To what extent this shortcoming causes

biases in practice remains to be studied. Additionally, the cal-

culation of the convex-hull volume for each sample requires

that the number of species always exceeds the number of traits

(Lalibert!e &Legendre 2010), which, in turn, constrains the user

either to reduce the dimensionality of the functional space or to

remove species-poor samples. In any case, FD as measured

with hypervolumes can always be estimated using the correc-

tion with TD completeness or fitting asymptotic functions.

Conclusions

Using a range of both theoretical and empirical examples, we

show that current approaches to estimating taxon diversity

(TD, usually species richness) are as efficient or even more

efficient when used to estimate phylogenetic (PD) or func-

tional (FD) diversity. The framework used here combines

TD, PD and FD into a single representation, offering a tool

for future developments involving these different facets of

biological diversity. A number of topics are in need of future

development, namely (i) the comparison of different

approaches to estimating PD and FD, not only the ones pre-

sented here but also other asymptotic functions or nonpara-

metric estimators; (ii) verification of the circumstances in

which each approach is preferable, if this is predictable at all;

and (iii) the development of estimators specifically for PD

and FD data, potentially superior to the current adaptations

of TD estimators.
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Appendix S1. Scaled mean square error (SMSE) of each descriptor of

species richness (TD) or phylogenetic diversity (PD) of accumulation

curves for European mammals (only incidence estimators are shown)

andAzorean arthropods.

Table S1. Scaled mean square error (SMSE) of each descriptor of spe-

cies richness (TD) or phylogenetic diversity (PD) of accumulation

curves for Europeanmammals (only incidence estimators are shown).

Table S2. Scaled mean square error (SMSE) of each descriptor of spe-

cies richness (TD) or functional diversity (FD) of accumulation curves

for Azorean arthropods.

Data S1. AnR script to estimate TD, PD andFD.
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Appendix S1. Scaled mean square error (SMSE) of each descriptor of species richness (TD) or phylogenetic 
diversity (PD) of accumulation curves for European mammals (only incidence estimators are shown) and 
Azorean arthropods. 

 

Table S1. Scaled mean square error (SMSE) of each descriptor of species richness (TD) or phylogenetic 
diversity (PD) of accumulation curves for European mammals (only incidence estimators are shown). Smaller 
values are best, 0 would represent an ideal descriptor. Percentages represent remaining bias in relation to 
observed values.  

SMSE TD PD (completeness) PD (curve fit and non-parametric) 
Sobs 0.112 0.032 0.032 
Clench 0.030 (27%) 0.002 (7%) 0.014 (45%) 
Jack 1 incidence 0.043 (39%) 0.002 (7%) 0.009 (27%) 
Jack 1P incidence 0.012 (11%) 0.001 (4%) 0.005 (17%) 
Chao 2 0.026 (23%) 0.003 (11%) 0.012 (38%) 
Chao 2P 0.044 (39%) 0.0002 (1%) 0.008 (25%) 

 

Table S2. Scaled mean square error (SMSE) of each descriptor of species richness (TD) or functional diversity 
(FD) of accumulation curves for Azorean arthropods. Smaller values are best, 0 would represent an ideal 
descriptor. Percentages represent remaining bias in relation to observed values. 

SMSE TD FD (completeness) FD (curve fit and non-parametric) 
Sobs 0.038 0.017 0.017 
Clench 0.014 (37%) 0.002 (12%) 0.007 (44%) 
Jack 1 abundance 0.019 (49%) 0.015 (86%) 0.009 (55%) 
Jack 1P abundance 0.023 (59%) 0.026 (153%) 0.010 (58%) 
Chao 1 0.012 (32%) 0.007 (39%) 0.009 (51%) 
Chao 1P 0.013 (33%) 0.015 (89%) 0.011 (65%) 
Jack 1 incidence 0.015 (40%) 0.014 (84%) 0.007 (41%) 
Jack 1P incidence 0.019 (49%) 0.030 (176%) 0.007 (42%) 
Chao 2 0.013 (33%) 0.006 (38%) 0.008 (48%) 
Chao 2P 0.010 (27%) 0.015 (86%) 0.009 (50%) 
�
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##### Code to calculate observed and estimated taxon, phylogenetic and functional diversity
#####
#
# This code contains several functions to calculate estimated taxon, phylogenetic and
functional diversity, according to the methods given in
# Cardoso et al (2014) A new frontier in biodiversity inventory: a proposal for estimators
of phylogenetic and functional diversity.
# Methods in Ecology and Evolution, 5: 452-461.
#
# xTree : a function necessary to calculate branch lengths
# Auxiliary functions : functions necessary to preprocess the data
# estimate : the main function that calculates the estimators of TD, FD and PD
#
# Both xTree and auxiliary functions need to be uploaded into R before running the function
estimate.
#
# The function estimate has two main arguments:
# comm - a data frame with species as columns, plots/sites as rows, and presence/absence or
abundance as entries
# tree - which could be either a phylogenetic or functional tree.
# The tree can be either a phylo or an hclust object. The function estimate extracts branch
lengths from an
# hclust object but we include the function as.hclust to automatically convert phylo objects
to
# class "hclust".
#
# The authors ensure that care has been taken in writing the code and it is
# believed to be accurate. However, users of this code are cautioned that it has not been
# extensively tested and its use and results are solely the responsibility of the user.
#
##### Code by Jose Carlos Carvalho, Francois Rigal & Pedro Cardoso
#
# xTree function adapted from
http://owenpetchey.staff.shef.ac.uk/Code/Code/calculatingfd_assets/Xtree.r
# by Jens Schumacher (described in Petchey & Gaston 2002, 2006)
#
xTree <- function(h) {
#
# h : a tree or dendrogram. It could be an hclust or phylo object.
# If it is a phylo object, the tree needs to be ultrametric (check with function
is.ultrametric from package ape)
#

h <- as.hclust(h)
nSpecies = nrow(as.data.frame(h['order']))
H1 <- matrix(0, nSpecies, 2 * nSpecies - 2)
l <- vector("numeric", 2 * nSpecies - 2)
for(i in 1:(nSpecies - 1)) {

if(h$merge[i, 1] < 0) {
l[2 * i - 1] <- h$height[order(h$height)[i]]
H1[ - h$merge[i, 1], 2 * i - 1] <- 1

} else {
l[2 * i - 1] <- h$height[order(h$height)[i]]-h$height[order(h$height)[h$merge[i,
1]]]
H1[, 2 * i - 1] <- H1[, 2 * h$merge[i, 1] - 1] + H1[ , 2 * h$merge[i, 1]]

}
if(h$merge[i, 2] < 0) {

l[2 * i] <- h$height[order(h$height)[i]]
H1[ - h$merge[i, 2], 2 * i] <- 1
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} else {
l[2 * i] <- h$height[order(h$height)[i]] - h$height[order(h$height)[h$merge[i,
2]]]
H1[, 2 * i] <- H1[, 2 * h$merge[i, 2] - 1] + H1[, 2 *h$merge[i, 2]]

}
}
rownames(H1)= h$labels
list(l, H1)

}

##### Auxiliary functions #####
#
# preprocess data
prep <- function(comm, tree, abund = TRUE){

xTree.object = xTree(tree)
len = xTree.object[[1]] ## length of each branch
A = xTree.object[[2]] ## matrix species X branches
minBranch = min(len[colSums(A)==1]) ## minimum branch length of terminal branches
BA = comm%*%A ## matrix samples X branches
if (!abund) BA = ifelse(BA >= 1, 1, 0)

return (list(lenBranch = len, sampleBranch = BA, minBranch = minBranch))
}

# observed TD
sobs <- function(comm){

value = colSums(comm)
return (sum(value > 0))

}

# TD of rare species for abundance - singletons, doubletons, tripletons, etc
srare <- function(comm, abund){

value = colSums(comm)
return (sum(value == abund))

}

# TD of rare species for incidence - uniques, duplicates, triplicates, etc
qrare <- function(comm, incid){

value = colSums(ifelse(comm > 0, 1, 0))
return (sum(value == incid))

}

# observed P/FD
dSobs <- function(comm, tree){

data = prep(comm, tree)
value = ifelse (colSums(data$sampleBranch)>0, 1, 0) ## vector of observed branches
return (sum(value*data$lenBranch))

}

# P/FD of rare species for abundance - singletons, doubletons, tripletons, etc
dSrare <- function(comm, tree, abund){

data = prep(comm, tree)
value = ifelse (colSums(data$sampleBranch)==abund, 1, 0) ## branches with given
abundance
return (sum(value*data$lenBranch))

}

# P/FD of rare species for incidence - uniques, duplicates, triplicates, etc
dQrare <- function(comm, tree, incid){
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data = prep(comm, tree, FALSE)
value = ifelse (colSums(data$sampleBranch)==incid, 1, 0) ## branches with given
incidence
return (sum(value*data$lenBranch))

}

# minimum terminal branch length
minBranch <- function(comm, tree){

data = prep(comm, tree)
return(data$minBranch)

}

##### Main function
#
estimate <- function(comm, tree, func = "species", runs = 1000){
#
# Arguments--
#
# comm : matrix of species x samples (with species ordered as in the tree)
# tree : an hclust object with all the species of comm
# func : computes the estimates for TD, PD and FD. This argument has four options:
## "species" - computes TD with non-parametric estimators
## "completeness" - computes P/FD with TD completeness correction
## "dendrogram" - computes P/FD with non-parametric estimators
## "curve" computes P/FD with curve fitting
# nruns : number of runs used to build the accumulation curves

func <- match.arg(func, c("species", "completeness", "dendrogram", "curve"))

##### species (TD with non-parametric estimators)
switch(func, species = {

results = matrix(0,nrow(comm),15)
for (r in 1:runs){

comm = comm[sample(nrow(comm)),, drop=FALSE] ## shuffle rows (samples)
data = matrix(0,0,ncol(comm)) ## reset data
runData = matrix(0,0,15)
for (q in 1:nrow(comm)){

data = rbind(data, comm[q,])
n = sum(rowSums(data))
obs = sobs(data)
s1 = srare(data, 1)
s2 = srare(data, 2)
q1 = qrare(data, 1)
q2 = qrare(data, 2)
jack1ab = obs + s1
jack1abP = jack1ab * (1+(s1/obs)^2)
jack1in = obs + q1 * ((q-1)/q)
jack1inP = jack1in * (1+(q1/obs)^2)
chao1 = obs + (s1*(s1-1))/(2*(s2+1))
chao1P = chao1 * (1+(s1/obs)^2)
chao2 = obs + (q1*(q1-1))/(2*(q2+1))
chao2P = chao2 * (1+(q1/obs)^2)
runData = rbind(runData, c(q, n, obs, s1, s2, q1, q2, jack1ab, jack1abP,
jack1in,

jack1inP, chao1, chao1P, chao2, chao2P))
}
results = results + runData

}
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results = results / runs

##### completeness (P/FD with TD completeness correction)
}, completeness = {

results = estimate(comm, , "sp", runs)
results = results[-1,]
obs = matrix(0,nrow(comm),1)
for (r in 1:runs){

comm = comm[sample(nrow(comm)),] ## shuffle rows (samples)
for (s in 1:nrow(comm)) obs[s,1] = obs[s,1] + dSobs(comm[1:s,], tree)

}
obs = obs / runs
for (i in 4:7) results[,i] = -1
for (i in 8:15) results[,i] = obs * (results[,i] / results[,3])
results[,3] = obs

##### dendrogram (P/FD with non-parametric estimators)
}, dendrogram = {

resArray = array(0, dim = c(nrow(comm), 15, runs))
for (r in 1:runs){

comm = comm[sample(nrow(comm)),, drop=FALSE] ## shuffle rows (samples)
data = matrix(0,0,ncol(comm)) ## reset data
runData = matrix(0,0,15)
for (q in 1:nrow(comm)){

data = rbind(data, comm[q,])
n = sum(rowSums(data))
obs = dSobs(data, tree)
s1 = dSrare(data, tree, 1)
s2 = dSrare(data, tree, 2)
q1 = dQrare(data, tree, 1)
q2 = dQrare(data, tree, 2)
mb = minBranch(data, tree)
jack1ab = obs + s1
jack1abP = jack1ab * (1+(s1/obs)^2)
jack1in = obs + q1 * ((q-1)/q)
jack1inP = jack1in * (1+(q1/obs)^2)
chao1 = obs + (s1*(s1-mb))/(2*(s2+mb))
chao1P = chao1 * (1+(s1/obs)^2)
chao2 = obs + (q1*(q1-mb))/(2*(q2+mb))
chao2P = chao2 * (1+(q1/obs)^2)
runData = rbind(runData, c(q, n, obs, s1, s2, q1, q2, jack1ab, jack1abP,
jack1in,

jack1inP, chao1, chao1P, chao2, chao2P))
}
resArray[,,r] = runData

}

##### calculate median of all runs
results = matrix(0,nrow(comm),15)
v = array(0, dim = c(runs))
for (i in 1:nrow(comm)){

for (j in 1:15){
for (k in 1:runs){

v[k] = resArray[i,j,k]
}
if (j < 12 ) results[i,j] = mean(v)
else results[i,j] = median(v)

}
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}

##### curve (P/FD with curve fitting)
}, curve = {

results = matrix(0,nrow(comm),4)
for (r in 1:runs){

comm = comm[sample(nrow(comm)),, drop=FALSE] ## shuffle rows (samples)
runData = matrix(0,0,4)
for (s in 1:nrow(comm)){

n = sum(rowSums(comm[1:s,,drop=FALSE]))
obs = dSobs(comm[1:s,], tree)
runData = rbind(runData, c(s,n,obs,obs))

}
results = results + runData

}
results = results / runs
for (s in 3:nrow(comm)){ ## fit curves only with 3 or more samples

x = results[1:s,1]
y = results[1:s,3]
clench = try(nls(y ~ (a*x)/(1+b*x), start = list(a = 1, b = 1), control =
nls.control(maxiter = 10000)),

silent = TRUE); ## does not stop in the case of error
if(class(clench) != "try-error"){

a = coef(clench)[1]
b = coef(clench)[2]
results[s,4] = a/b

}
}
colnames(results) = c("Samples", "Ind", "Obs", "Clench")
return (results)

})
results = rbind(rep(0,15), results)
colnames(results) = c("Samples", "Ind", "Obs", "S1", "S2", "Q1", "Q2", "Jack1ab",
"Jack1abP", "Jack1in",

"Jack1inP", "Chao1", "Chao1P", "Chao2", "Chao2P")
return(results)

}

# Example of a tipical R session running this code
# tr # species X trait matrix
# comm # sites X species matrix
# tr.hc= hclust (tr)
# estimate (comm, tr.hc)
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