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ABSTRACT

Aim The relationship between species number and area is of fundamental impor-
tance in macroecology and conservation science, yet the implications of different
means of quantitative depiction of the relationship remain contentious. We set out
(1) to establish the variation in form of the relationship between two distinct
methods applied to the same habitat island datasets, (2) to explore the relevance of
several key dataset properties for variation in the parameters of these relationships,
and (3) to assess the implications for application of the resulting models.

Locations Global.

Methods Through literature search we compiled 97 habitat island datasets. For
each we analysed the form of the island species–area relationship (ISAR) and
several versions of species accumulation curve (SAC), giving priority to a
randomized form (Ran-SAC). Having established the validity of the power model,
we compared the slopes (z-values) between the ISAR and the SAC for each dataset.
We used boosted regression tree and simulation analyses to investigate the effect of
nestedness and other variables in driving observed differences in z-values between
ISARs and SACs.

Results The Ran-SAC was steeper than the ISAR in 77% of datasets. The differ-
ences were primarily driven by the degree of nestedness, although other variables
(e.g. the number of islands in a dataset) were also important. The ISAR was often
a poor predictor of archipelago species richness.

Main conclusions Slopes of the ISAR and SAC for the same data set can vary
substantially, revealing their non-equivalence, with implications for applications of
species–area curve parameters in conservation science. For example, the ISAR was
a poor predictor of archipelagic richness in datasets with a low degree of
nestedness. Caution should be employed when using the ISAR for the purposes of
extrapolation and prediction in habitat island systems.
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INTRODUCTION

The increase in number of species with area is one of the few

laws of ecology (Scheiner, 2003). While those working with

species–area curves have long recognized different forms of

curve, confusion in terminology and usage has persisted (for use

herein see Table 1), as evidenced by an exchange of papers in

this journal disputing the number of fundamental types of

bs_bs_banner

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016)

© 2016 John Wiley & Sons Ltd DOI: 10.1111/geb.12439
http://wileyonlinelibrary.com/journal/geb 1



relationship and the key distinctions between them (Scheiner,

2003, 2004; Gray et al., 2004a,b). In their contributions, Gray

et al. (2004a,b) argued that the most important distinction was

between species accumulation curves (SACs), which present

cumulative counts of increased species number with sampling

area, and island-type species–area relationships (herein termed

ISARs), in which the function fitted is based on how many

species are found in each sampled area (or island). By virtue of

their mode of construction, SACs (which can be constructed in

several distinct ways; see Appendix S1 in the Supporting Infor-

mation) must be rising functions, whereas in principle an ISAR

can have a negative slope: a large island may have fewer species

than a smaller one (Scheiner, 2003), suggesting the possibility

that the form of the SAC and ISAR may vary substantially.

However, in the island literature, and in its application in con-

servation science, it is sometimes assumed that the form of the

SAC and that of the ISAR are directly comparable (as noted by

Ulrich & Buszko, 2007, p. 55). Two classic illustrations of this are

to be found in the seminal works of MacArthur & Wilson (1967)

and Rosenzweig (1995, 2003).

MacArthur & Wilson (1967), in their Fig. 3, provide two data

series – one a cumulative species–area curve of contiguous sam-

pling areas on mainland New Guinea and the other a set of

points representing the richness of each island in the region.

They comment (p. 10) that ‘[t]he line and the cluster of points

illustrate the principle that the increase in number of species

with area is more rapid in the case of isolated islands or archi-

pelagos than in expanding sample areas on a single land mass’.

Similarly, Rosenzweig (1995, p. 10) notes, in developing the

three scales of species–area relationship model on which his

reconciliation ecology (Rosenzweig, 2003) is largely based, that

if scattered areas (or islands) are used to construct a species–area

curve this will produce a steeper slope (a higher z-value) than if

contiguous subplots are used: moreover, the greatest disparity

occurs between the richness estimated for the smallest areas,

while with increasing area of sample units what we term the SAC

and ISAR converge towards the regional richness value.

Rosenzweig (1995, p. 19) poses the question as to whether the

difference in z-values might be a consequence of the different

mode of construction of the two forms of function, but having

provided a single demonstration of similarity of values he goes

on to state (Rosenzweig, 1995, p. 19) that ‘The data suggest that

we do not have a problem here’. The question of equivalence of

SACs and ISARs is not trivial: if we assume that the different

mode of construction of SACs and ISARs is of no great conse-

quence, it follows that we can, for example, base projections of

the consequences of habitat loss on comparisons of z-values for

contiguous habitat (assessed by SAC models) with z-values for

islands or habitat islands (assessed by ISARs). That this might be

a dangerous assumption has previously been argued by several

authors (e.g. Ulrich & Buszko, 2007; Whittaker &

Fernández-Palacios, 2007; Hui, 2008; Dengler, 2009), while the

significance of how SACs are constructed for projections of

species extinctions has also seen lively recent debate (e.g. He &

Hubbell, 2011, 2013; Axelsen et al., 2013), revealing that our

understanding of the behaviour of different forms of species–

area curve remains incomplete (Whittaker & Matthews, 2014).

Our purpose herein is to advance understanding of the empiri-

cal differences between SAC and ISAR data structures by means

of a systematic comparison for a large set of habitat island

datasets. Specifically, we use a randomization procedure to con-

struct a Scheiner type IIIb curve (termed Ran-SAC; Table 1), and

Table 1 A glossary of the terms used in this study.

Abbreviation Full term Definition

– Species–area

curve/relationship

Here used as general terms for the relationship between sample area and species richness/number

ISAR Island species–area

relationship

Whereby the number of species occurring within each of a set of islands is analysed as a function

of the area of each island. Equivalent to Scheiner (2003) type IV curves

SAC Species accumulation curve Plots of increasing cumulative species number with increasing sampling effort/area

SL-SAC Small–large SAC The order of island incorporation into the SAC starts with the smallest island and increases up to

the largest

Ran-SAC Random SAC The order of island accumulation when constructing the SAC is random

z – The slope parameter of the power species–area relationship model

zDif – The difference between the SAC z-value and the ISAR z-value

BRT Boosted regression tree

analysis

A regression method which combines a large number of tree models

Nestedness – The situation in which depauperate island faunas constitute proper subsets of the species in richer

islands (see Matthews et al., 2015a). In the current study we are interested in species nestedness

between isolates

Anti-nestedness – A dataset which is significantly less nested than expected by chance (Matthews et al., 2015a)

NODF Nestedness metric based on

overlap and decreasing fill

A nestedness metric based on the twin properties of standardized differences in row and column

fills and the overlap of presences in two adjacent columns

ArcRes Archipelagic residual The standardized absolute difference between the observed number of species across all islands in a

dataset and the number of species predicted by the log–log power model (log transformed)

T. J. Matthews et al.
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compare the z-values with a Scheiner type IV curve (the ISAR)

based on fits using the power model to test the hypothesis that

they are non-equivalent. Strictly speaking, our Ran-SAC is a

variant of a Scheiner type IIIb curve, because although the

Ran-SAC is constructed using mean richness obtained by

randomization the observational units are habitat islands of

varying area rather than non-contiguous plots of equal size.

However, despite this difference, our Ran-SAC is still clearly a

SAC,allowing us to compare SAC and ISAR data structures.Next,

we explore the relevance of several key dataset properties for

variation in the parameters of these relationships, testing the

hypothesis that compositional nestedness (see Table 1) will be a

significant determinant of variation in z (slope), such that in

anti-nested systems (Table 1) the Ran-SAC will be steeper than

the ISAR and as the degree of nestedness increases this situation

will gradually reverse. While it has long been appreciated that the

form of species–area curves from non-contiguous samples is a

consequence of both alpha (local) and beta (differentiation)

diversity this is, to our knowledge, the first systematic attempt to

quantify the interrelationship between ISAR and SAC form and

system nestedness across a series of habitat islands.

MATERIALS AND METHODS

Data collection, formatting and species–area curve
construction

Datasets were sourced via a comprehensive search of the litera-

ture (Appendix 1) following steps and criteria for evaluating

suitability set out in Appendix S2 (see also Matthews et al.,

2014a; Matthews, 2015). For each selected dataset we recorded

the following: geographical location, taxon, habitat island type

(forested or non-forested), latitude and longitude of the study

extent (for some datasets this was an estimate as the data were

not presented in the source papers), range of species richness

and island sizes, and a classification of the predominant matrix

type (as per Appendix S2).

For each dataset we constructed (1) the standard ISAR using

the raw island area and richness values and (2) several forms of

SAC, using different rules for combining islands into the

sequence, namely small–large, large–small, poor–rich, rich–

poor, random (Table S1). Except where stated, we present results

for the smoothed random form of SAC (Ran-SAC) on the

grounds that this is now standard practice for constructing such

curves (e.g. Ugland et al., 2003) (but see Fig. S1 in Appendix S1

for an example of the variation in form that can be observed

using the full set of SAC rules). The Ran-SAC was constructed

using a simple bootstrap procedure, randomly selecting the

order of island addition into the SAC at each iteration. For

example, for the second data point (i.e. two islands) of the SAC

of a dataset we randomly selected two islands, noting down the

combined area and combined richness of this pair. We repeated

this 5000 times, and used the mean of the 5000 x- and y-values

as the data point representing two islands in the analysis.

Our aim was to compare the form of the ISAR with that of

Ran-SAC for the same dataset. The simplest way to do this is to

compare the z-values of the power model (S = cAz) fitted to both

sets of data. We focus principally on z as this parameter has

attracted far more attention and application than has c (e.g.

Rosenzweig, 1995; Tjørve & Tjørve, 2008; Triantis et al., 2012).

However, this method is arguably only appropriate if the power

model provides a reasonably good fit to both sets of data. Thus,

we devised a set of criteria to select suitable datasets for analysis.

First, we fitted the power (nonlinear) model to the two different

data types for each dataset using nonlinear regression and the

‘mmSAR’ R package (Guilhaumon et al., 2010), and recorded the

two parameters (c, z), R2 and whether the z-value was signifi-

cantly different from zero. A dataset was deemed satisfactory

according to this process if the z-value of the power model was

significant for both the SAC and ISAR structures, and the R2

was ≥ 0.5 in both cases. This threshold was chosen arbitrarily to

eliminate datasets in which the power model explained only a

small amount of variation in the SAR. Second, while the

observed shape of the power (nonlinear) model is generally

convex, we wished to determine whether a model with a different

shape provided a better fit to our data. Thus, we fitted a set of 20

ISAR models (including the power model) to the ISAR and SAC

data from each dataset using a modified version of the fitting

algorithm within the R package mmSAR (see Triantis et al.,

2012; Matthews et al., 2015b). We considered the model with the

lowest Akaike information criterion corrected for small sample

size (AICc) as providing the best fit (Burnham & Anderson,

2002). AICc weights (wAICc; the probability of each model being

the best-fitting model given the set of models) were computed

for each model fit. Because of the non-nullity constraint on the

denominator of the formula, AICc could not be calculated for

datasets with fewer than seven islands, and thus these datasets

were discarded as were models with inadequate fits (e.g. due to

non-normal residuals; cf. Triantis et al., 2012). We then deter-

mined the observed shape of the best model fit (convex, sigmoid

or linear) according to the algorithm outlined in Triantis et al.

(2012) (and see Appendix S3). For each dataset, if the observed

shape of either of the best model fits (i.e. to the ISAR and SAC

data) was linear or sigmoid (a check was made for linear power

model fits and none were observed), the dataset was discarded as

the inclusion of z-values from these fits may bias our compari-

sons. In sum, to be classified as satisfactory, both the ISAR and

SAC forms of each dataset needed to have: (1) significant

z-values from the power model fits, (2) R2 values ≥ 0.5 from the

power model fits, and (3) observed convex fits, when considering

the best model from a set of twenty competing models.

For these satisfactory datasets, the difference between the

Ran-SAC z-value and the ISAR z-value (zDif; Table 1) was used

as our response variable. We also re-ran our analyses using the

zDif values from all datasets (i.e. those deemed satisfactory and

unsatisfactory).

Relative influence of the explanatory variables

To determine the factors that could potentially account for

between-dataset differences in zDif, we fitted a boosted regres-

sion trees model (BRT; Table 1) using the functions provided in

Island species–area relationships and species accumulation curves
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Elith et al. (2008). In contrast to traditional regression, for which

inference is drawn from a single best model, BRT combines a

large number of tree models in order to increase predictive

performance (Elith et al., 2008). Recent work has shown that the

use of weight of evidence values (Burnham & Anderson, 2002)

within a linear modelling framework to determine the relative

importance of predictor variables is flawed (Galipaud et al.,

2014). BRT offers a useful intuitive and robust alternative (see

Elith et al., 2008).

In the BRT analysis, zDif was used as the response variable

and the dataset characteristics listed above were used as predic-

tor variables. As a further predictor variable, we also calculated

the degree of nestedness in each dataset using the NODF metric

(Almeida-Neto et al., 2008), implemented in the ‘vegan’ R

package (Oksanen et al., 2013). NODF was calculated using the

maximally packed matrix. Sites containing zero species were

removed prior to calculation, as by definition such sites have

zero nestedness and act to depress the NODF value for the full

set of sites (see Matthews et al., 2015a). Cross-validation func-

tionality was used to determine the optimum number of trees.

We experimented with varying tree complexity, learning rate

and bag fraction parameter values in order to minimize the

minimum predictive errors, selecting final values of 5 (tree com-

plexity), 0.001 (learning rate; 0.01 when using all datasets) and

0.5 (bag fraction). These values resulted in an optimal number

of 7050 fixed trees using only the satisfactory datasets and 4500

trees when all datasets were used. The error structure was con-

sidered to be Gaussian. No outliers were removed when running

the BRT analysis using the satisfactory datasets, but two outliers

had to be removed when using all datasets to induce normality

in zDif. The predictive power of the model was assessed through

cross-validation, whereby the fitted model was tested on with-

held portions of the data (10 subsets were used).

The relative influence of the predictor variables was again

calculated using the functions in Elith et al. (2008), which weigh

the number of times a predictor is chosen for splitting by the

squared improvement to the model due to each split. Partial

dependence plots were also used to assess and visualize the effect

of a predictor after accounting for the effects of all other model

predictors (Elith et al., 2008). In partial dependence plots the

y-axis shows the effect of a predictor variable on the response

variable after accounting for the effects of the other model pre-

dictors (i.e. the marginal effect of the predictor).

Simulation analyses

As the BRT analyses revealed NODF to be the most important

variable (see Results), we undertook a simulation analysis to

further examine the relevance of nestedness for the difference

between the z-values of the two forms of dataset. First, we simu-

lated a set of six islands with area and species richness values

conforming roughly to a convex ISAR (area = 1, 5, 10, 15, 20 and

30; containing 10, 12, 14, 16, 17 and 18 species, respectively;

herein ‘Sim1’). We fitted the power model (nonlinear) to the

ISAR-structured form of Sim1 and recorded the model param-

eters. We then simulated a perfectly nested (i.e. NODF = 100)

presence–absence matrix using the data characteristics of Sim1

(i.e. island number and species richness) and used this matrix to

construct the SL (small–large) SAC (see Appendix S1), fitting

the power model to the resulting curve. We used the SL-SAC in

this analysis because constructing the Ran-SAC for this many

matrices would have been computationally intensive. We then

altered the presence–absence matrix (without changing the area

and richness values) to change the degree of matrix nestedness

by randomly shuffling the presences along the sites (i.e. matrix

rows) using the ‘commsimulator’ function in the vegan R

package and discarding any matrix which had already been

simulated. The total number of species in the species pool (i.e.

the total number of possible columns in the presence matrix)

was set to 40, and we allowed gamma diversity to change

between matrices, while the alpha diversity of each island

remained constant. This permitted us to create matrices with

substantially different levels of nestedness. However, as this

meant that the number of columns (total number of species)

varied between matrices we used the NODF-by-rows value as

our measure of nestedness. For each accepted matrix, we con-

structed the SAC curve and fitted the power model. We started

the random shuffling from different starting points (i.e. differ-

ent initial presence–absence matrices), used a variety of com-

munity simulation algorithms (i.e. R0, R1 and R2) and repeated

this process iteratively for 12,000 runs, to cover a wide range of

NODF values. We then examined zDif values for each iteration,

plotting zDif as a function of nestedness.

Determining the degree of deviation of the
archipelagic point

To determine whether the archipelagic point (‘regional rich-

ness’) of a dataset deviated from the ISAR of the constituent

islands, we followed the method and nomenclature outlined by

Santos et al. (2010). We also use ‘archipelagic point’ to refer to the

total area and richness of the corresponding set of habitat islands

(i.e. the archipelago). For each dataset, we fitted the power (log–

log, base 10) SAR model to the ISAR structure and derived the

fitted values of the model for each island (‘SIpred)’. The log–log

version of the power model was used in this analysis as it was the

model used by Santos et al. (2010) and thus allowed us to

compare our results with theirs. Also following Santos et al.

(2010), we added 0.01 to each species richness value to avoid zero

values, although we acknowledge that other constants could also

be used. We then calculated the archipelagic point as the cumu-

lative total area of all habitat islands in the dataset plotted against

the cumulative species richness total (‘SAobs’) and predicted the

number of species in the archipelagic point (‘SApred’) using the

ISAR model of the constituent islands. We followed Santos et al.

(2010) and calculated the archipelagic residual (‘ArcRes’;

Table 1) as the absolute difference between log(SAobs) and

SApred, standardized by log(SAobs) (see Appendix S3 for

details). We noted whether the ISAR over- or under-predicted

richness in the archipelagic point for each dataset. This ArcRes

methodology represents a simple metric with which to describe

how well the ISAR predicts the archipelagic richness.

T. J. Matthews et al.
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To determine if any dataset characteristics (above) could

explain variation in ArcRes between datasets we repeated our

BRT analyses (learning rate of 0.01) using ArcRes as the

response variable. We only used ArcRes values from datasets in

which the power (log–log) provided a significant fit (cf. Santos

et al., 2010). Nine outlying points had to be removed to induce

normality, as there was a long left-hand tail in the distribution of

ArcRes values. The optimal number of fixed trees was 2200. All

analyses and simulations were conducted in R (v.3.1.1.; R

Development Core Team, 2014). A significance level of 0.05 was

employed in all analyses.

RESULTS

We screened over 1000 published articles, of which 97 were

deemed suitable for analysis (Appendix 1 and Table S2 in Appen-

dix S2): 69 vertebrate,20 invertebrate and 8 plant datasets.For the

majority of both the ISAR and Ran-SAC datasets the observed

best-fitting model shape was convex (for the ISARs the mean

wAICc (AICc weights [wAICc; the probability of each model being

the best-fitting model given the set of models]) for convex model

fits is 0.86, for linear fits 0.09 and for sigmoid fits 0.09; for

Ran-SAC the equivalent results were 0.99, 0.00 and 0.02, respec-

tively).The power model was within the set of six best models (i.e.

it was ranked as one of the top six models according to AICc) for

67 of the ISAR datasets and 9 of the Ran-SAC datasets. According

to our three additional dataset acceptance criteria, 50 datasets

were deemed satisfactory for the zDif analyses.

Differences in the z-value of ISARs and Ran-SACs

Considering only the 50 satisfactory datasets, the Ran-SAC

z-value was greater than the ISAR z-value for 32 cases (e.g. see

Fig. 1) and was smaller for the remaining 18. The power model

explained a larger amount of variance for the Ran-SAC (mean

R2 = 0.97) than for the ISAR (mean R2 = 0.76), although this

result is easily explained by the smoothing process involved in

calculating the Ran-SAC values. Considering all 97 datasets, the

Ran-SAC z-value was larger in 75 cases. The z- and c-values are

provided in Table S3 in Appendix S4, as are values from the power

model fitted to the other SAC data structures (e.g. the SL-SAC).

Boosted regression tree results

When zDif values from satisfactory datasets were used as the

response variable, NODF was the most important explanatory

variable (relative influence value of 24.6; see Table 2). Both the

minimum number of species and the number of islands also had

relatively high influence values (Table 2, Fig. 2a, b). In terms of

the overall predictive performance of the model, the mean coef-

ficient of the correlation between the observed and predicted

response values was 0.63 when based on the cross-validation

data. Results were qualitatively similar when considering zDif

values from all datasets (mean correlation coefficient 0.68).

As predicted, further analysis revealed that in highly nested

systems the z-values for ISARs were greater than those for Ran-

SACs, and the reverse for systems with little nesting (see Figs 2a

& 3a). In addition, the z-value of the Ran-SAC was significantly

related to the NODF value (Fig. 3b), whereas there was no rela-

tionship between the z-value of the ISAR and NODF (Fig. 3c).

Nestedness simulations

The simulation analyses revealed further evidence for the

importance of nestedness in explaining the difference in z-value

between ISARs and SACs. In the case of Sim1, when the system

was anti-nested (low NODF values), the z-value of the SL-SAC

was greater than that of the ISAR. As the degree of nestedness

was increased, the difference in z-values declined until the ISAR

z-value exceeded that of the SL-SAC (Fig. 4a). Figure 4(b) illus-

trates this effect for two SL-SAC curves constructed from the

most nested and anti-nested Sim1 iterations, respectively (we

used the SL-SAC curve type as the area range of the ISAR and

SAC are similar, making the plot easier to interpret).

The fit of the archipelagic data point

When considering only datasets in which the power (log–log)

model provided a significant fit (n = 73), the archipelagic point

deviated substantially (following the rule of thumb used by

Figure 1 Power model fits constructed from the same habitat
island dataset: Gavish et al. (2012) (invertebrates in a study system
from Israel; 12 islands and 114 species). The fits of the power
model (nonlinear) to the island species–area relationship (ISAR)
data (solid circles; the solid line is the model fit) and the
randomized species accumulation curve (Ran-SAC) data (solid
triangles; the dashed line is the model fit) are shown. For the
ISAR model fit, the power model has been extrapolated to the
total cumulative area of all habitat islands in the system using the
parameters derived from the model fitting process. The z-values of
the models are 0.25 for the ISAR model and 0.46 for the SAC
model.

Island species–area relationships and species accumulation curves
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Santos et al., 2010) from the prediction of the constituent ISAR

in 14 datasets (see Fig. 5 for an example of both scenarios). The

ISAR under-predicted the archipelagic richness in 45 cases

(Table S3 in Appendix S4). Considering 64 datasets (the 75 sig-

nificant fits minus the 9 outliers), when ArcRes was used as a

response variable in a BRT analysis, NODF was the variable with

the highest relative influence value (Table 2). The number of

species and the minimum number of species in a dataset were

also important variables (Table 2). The mean coefficient of the

correlation between the observed and predicted response values

was 0.35.

DISCUSSION

To evaluate the impact of confounding ISAR and SACs in SAR

analyses and syntheses, and to understand their differing emer-

gent properties, we compared the z-values of ISAR and Ran-SAC

curves using a large compilation of habitat island datasets. The

construction of SACs from island data has been attempted pre-

viously (e.g. Quinn & Harrison, 1988; Rosenzweig, 1995; Fischer

& Lindenmayer, 2002; Fattorini, 2010), although these earlier

studies have largely focused on small–large and large–small

SACs. We decided to focus on a Ran-SAC as it represents an

average of the various SAC construction permutations (see

Appendix S1) and thus seems a sensible choice if only one type

of SAC is to be used in comparative analyses. As noted by pre-

vious authors (e.g. Ulrich & Buszko, 2007), critical tests of how

different types of SAR affect model shape and parameters are

lacking. We found that the z-values and form of the ISAR and

SAC curves varied considerably within datasets, and that this

variation could primarily be explained as a function of the

degree of nestedness in the archipelago. We also observed that

the ISAR was often a poor predictor of SAobs, demonstrating

the dangers of extrapolating the ISAR, for example, to predict

the richness of an archipelago of fragments.

Why are SACs generally steeper than ISARs?

In accordance with our first hypothesis we found considerable

differences between the z-values of ISARs and SACs (e.g. Figs 1 &

S1). Hence, our results illustrate that different inferences might

be drawn depending on which data structure is used in an

analysis (and see Ulrich & Buszko, 2007, for an analysis based on

a different SAC type). Consistent with our second hypothesis, the

difference in the z-values of SACs and ISARs is best explained by

variation in compositional nestedness, a pattern which is to be

expected as a function of the procedures used in constructing the

two types of curves (Gray et al., 2004a,b); a fact highlighted by

both empirical and simulation analyses (Figs 2 & 4).

A number of factors have been argued to underpin the z-value

of SACs, through an effect on species overlap and/or nestedness

(e.g. Quinn & Harrison, 1988; Chase & Knight, 2013). Two of

these factors are particularly relevant to habitat island systems.

First, a large species pool means that, all else being equal, there is

a smaller probability that the same species will succeed in occu-

pying each island, and thus species overlap between islands is

reduced. Furthermore, if islands within an archipelago (of real

or habitat islands) draw species from different species pools the

likelihood is that species overlap across all islands will be

reduced (Whittaker & Fernández-Palacios, 2007). Second,

habitat islands are generally disturbed systems, and disturbance

usually has a disproportionate effect in smaller islands

(Whittaker & Fernández-Palacios, 2007). This means that

matrix and generalist species are relatively over-represented in

smaller fragments (Matthews et al., 2014b), again resulting in

reduced overlap. In previous work we have shown that the rela-

tively high incidence of generalist species in smaller fragments

reduces the slope of a multimodel ISAR curve for a number of

habitat island datasets (Matthews et al., 2014b). This reduction

in ISAR slope coupled with the reduced species overlap across

islands provides one explanation for the many positive zDif

values (i.e. Ran-SAC steeper than ISAR) observed.

Our analyses indicated that other variables are also impor-

tant, independent of nestedness (Table 2), with the minimum

Table 2 The relative contributions (%) of predictor variables for
boosted regression tree models developed using cross-validation.
The model was fitted using two different response variables: zDif
(number of datasets = 50; 7050 fixed trees) and ArcRes (number
of datasets = 66; 2300 fixed trees). A set of dataset characteristics
were used as the predictor variables (see Materials and Methods).
The nestedness of the archipelago was measured using the NODF
(nestedness metric based on overlap and decreasing fill) metric
(maximally packed matrix). Island type was a categorical variable
indicating whether a dataset was a forested or a non-forest island,
and taxon was a categorical variable indicating whether a dataset
was a plant, vertebrate or invertebrate dataset. Matrix was a
variable indicating the permeability of the surrounding matrix
type. Variables are ordered by their relative influence in each case.

zDif ArcRes

Variable Relative influence Variable Relative influence

NODF 24.61 NODF 30.11

Min. sp. 17.94 No. sp. 16.62

No. Isl. 17.12 Min. sp. 13.60

Ar. ratio 13.15 Ar. ratio 8.00

Max. Ar. 9.80 Latitude 7.15

Longitude 4.53 Longitude 6.33

Latitude 4.52 Max. Ar. 5.31

No. sp. 2.78 Max Sp. 3.44

Max. sp. 2.14 No. Isl. 3.40

Matrix 1.43 Taxon 2.20

Min. Ar. 0.99 Min. Ar. 2.06

Isl. type 0.88 Isl. type 0.92

Taxon 0.11 Matrix 0.86

zDif, difference between the z-value of the species accumulation curve
and the z-value of the island species–area relationship (ISAR), for each
dataset; ArcRes, standardized difference between the cumulative species
richness total of the archipelago and the predicted the number of species
in the archipelagic point using the ISAR model of the constituent
islands; Min., minimum; Max., maximum; No., number; Ar., area; Isl.,
island, Sp., species.
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number of species (Min.) on an island in a dataset being the

second most influential variable explaining variation in

zDif (Table 2). The partial dependence plot of this variable

(Fig. 2b) indicates that low Min. values have a negative effect

on zDif; in this case, in many datasets with low Min. values

the ISAR is steeper than the Ran-SAC (i.e. zDif is negative).

Interestingly, the maximum number of species and the

total number of species in the archipelago had low values of

relative influence (Table 2). It is possible that this finding

could be due to an indirect effect of additional variables not

included in our analyses that are correlated with Min. Further

research is needed to fully explore the implications of these

results.

Landscape context variables (e.g. the habitat matrix and the

island type) were relatively unimportant (Table 2). This is sur-

prising as the habitat matrix is considered to be important in

determining differences in z-value between ISARs and SACs due

to the influence of matrix properties on species turnover (see

Crist & Veech, 2006). The lack of an effect of these variables is

probably due, at least in part, to the coarse matrix and island-

type classifications used in our analyses.

Interpreting variation in ArcRes

Using the simple descriptive metric adopted by Santos et al.

(2010) we found that the archipelagic point deviated substan-

tially from the ISAR prediction in 19% of datasets with a sig-

nificant ISAR, compared with 12% in Santos et al.’s analyses of

true island datasets. Consistent with our findings for slope

differences (i.e. zDif; see above) NODF had the largest effect on

ArcRes (Table 2), while the ISAR more frequently under-

predicted than over-predicted the richness of the archipelagic

point (Fig. 5a). A role for nestedness in under-prediction of

system richness may reflect the fact that habitat islands often

Figure 2 Partial dependence plots for two of the most influential variables in two boosted regression tree (BRT) models. The response
variable was zDif (a, b) [the difference between the z-value of the species accumulation curve and the z-value of the island species–area
relationship (ISAR) for each dataset], and in the second model the response was the the archipelagic residual (ArcRes) (c, d) (the
standardized difference between the cumulative species richness total of the archipelago and the predicted the number of species in the
archipelagic point using the ISAR model of the constituent islands). Only zDif values from satisfactory datasets were used (n = 50) in (a)
and (b), and only ArcRes values from datasets in which the fit of the power (log–log) model was significant (n = 73, reduced to 64 after
removing nine outliers) were used in (c) and (d). The two predictor variables in the first model are (a) nestedness (NODF; for the relative
contributions of each variable see Table 2) and (b) the minimum number of species in a dataset (Min. sp.). The two predictor variables in
the second model are (c) nestedness (NODF), and (d) the number of species in a dataset (No. sp.). The y-axis shows the effect of a predictor
variable (x-axis) on the response variable after accounting for the effects of the other model predictors (i.e. the marginal effect of the
predictor). The y-axis represents the effect of the predictor on the response, and is not an indicator of the value of the response at a given
value of the predictor. A positive y-value indicates that at the given x-value the effect (based on the model) on the y-value (the response) is
positive, and vice versa. The ends of the curves represent areas of the plotting space with fewer data points and are relatively uninformative.
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contain a large number of singletons (i.e. species that are only

sampled in one habitat island in a dataset and whose presence

reduces the nestedness of the full data matrix) as a result of

factors such as source–sink dynamics and transient species that

may be using suitable, but unsampled, patches of habitat within

the study area, thus enabling their persistence despite low fre-

quencies in the dataset. A recent meta-analysis using many of

the same datasets has shown that, contrary to earlier work, the

majority of habitat island systems described in the literature

have low levels of nestedness, and indeed that significant anti-

nestedness is more common than significant nestedness

(Matthews et al., 2015a). Taken together, these findings bring

into question the extrapolation of ISARs (see also Fig. 1b) and

certain other species–area curves of similar or composite

Figure 3 The relationship between nestedness (measured by the NODF metric) and (a) zDif [the difference between the randomized
species accumulation curve (Ran-SAC) z-value and the island species–area relationship (ISAR) z-value], (b) the SAC z-value, and (c) the
ISAR z-value. Only z-values from the satisfactory datasets (n = 50) were used to construct the plots. In each plot, the solid line represents
the best line of a linear regression model, and the R2 of this fit is given on each plot. The z-value was significant in each plot apart from (c),
which is shown for illustrative purposes only. An increasing NODF value indicates an increasing degree of nestedness, according to this
metric. (d) The z-value of the power model fitted using ISAR structured data plotted against z-values derived using randomly constructed
SAC data. The solid line in (d) represents the 1:1 fit line; points below the line represent datasets in which the ISAR z-value was larger than
the SAC z-value, and vice versa. The z-values in all plots relate to the nonlinear power SAR model.

Figure 4 The relationship between nestedness and the variation in z values of ISARs and small-large (SL; the order of island incorporation
into the SAC starts with the smallest island and increases up to the largest; see Appendix S1) constructed SACs. In (a) a perfectly nested
presence–absence matrix for a set of six islands of varying area was simulated (area of each island = 1, 5, 10, 15, 20 and 30; species richness
of each island = 10, 12, 14, 16, 17 and 18). First, the power model (nonlinear) was fitted to the data matrix in ISAR form, and the z-value
recorded. The SL-SAC was then constructed using the same data matrix, and again the power model was fitted. The presence–absence
matrix was then rearranged to change the level of nestedness, with the constraint that the species richness of each island was kept constant
(i.e. the ISAR remained unchanged), although the overall number of species in the archipelago was allowed to vary; the power model was
then fitted to both the ISAR and SAC constructed using this new data matrix. This process was repeated iteratively along a gradient of
NODF (by rows, i.e. sites) values. A total of 12,000 matrix permutations were simulated. The best fit linear regression line (solid line)
through these points (dots) is also shown. (b) The power (log–log) model, fitted to ISAR structured data (solid line, z = 0.18), and to
SL-SAC structured data using the same simulated island data as for (a). The fits of SL-SAC curves to two matrix permutations are shown: a
perfectly nested set of isolates (dashed line, z = 0.14), and a perfectly anti-nested set of isolates (dashed and dotted line, z = 0.32).
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construction: a common application of the ISAR (cf. Whittaker

et al., 2005; Ulrich & Buszko, 2007; Hui, 2008).

Implications and conclusions

The choice of how to construct the species–area curve and the

method of analysis are important considerations when using the

SAR for applied purposes (Whittaker et al., 2005; Ulrich &

Buszko, 2007; Halley et al., 2013; Matthews et al., 2015b), but

conservation biogeographical studies are often unclear about

the type of SAR employed and, indeed, terminology is incon-

sistent and disputed across the literature (see e.g. Scheiner, 2003,

2004; Gray et al., 2004a,b; Whittaker & Fernández-Palacios,

2007). Our analyses have provided empirical proof that ISAR

and SAC are not equivalent and may differ substantially in fitted

parameters (contrary to assumptions in, e.g., MacArthur &

Wilson, 1967, p10; Rosenzweig, 1995, p. 19). This distinction has

not always been recognized, and greater attention should there-

fore be paid to explicitly identifying the type of species–area

curve and method of fit used in future ecological analyses (see

also Scheiner, 2003; Ulrich & Buszko, 2007). The present analy-

sis does not argue in favour of one specific species–area function

being universally preferable; rather, the choice depends on the

aim of study and the data available. For example, SACs are

arguably more useful than ISARs for assessing the contribution

of different sized islands to a protected area network (Fischer &

Lindenmayer, 2002; Watson et al., 2009).

Based on the self-similar scaling properties of the power model,

Tjørve & Tjørve (2008) (see also Harte et al., 1999) used a form of

SAC to show mathematically that the proportional overlap

between two areas of the same size can be plotted as a function of

z: as z increases, the degree of species overlap decreases. For

example, a z-value of 0.58 equates to 50% of the species being

shared between the two areas (Tjørve & Tjørve, 2008). Our results

provide an empirical illustration of this point (e.g. Fig. 3b) and

indicate that: (1) the SAC is often steeper than the ISAR when

the curves are constructed using habitat island data, and (2) the

z-value of the ISAR only becomes consistently greater than the

z-value of the SAC when the data are highly nested, i.e. the NODF

value is approximately 70 or above (e.g. Figs 3a & 4b).

It is also evident that for a number of habitat island systems

the ISAR is a poor predictor of the overall number of species in

an archipelago (e.g. Fig. 5a). Thus caution should be employed

when using the ISAR for extrapolation purposes in fragmented

systems, particularly when species overlap is thought to be low

(Crist & Veech, 2006). The SAC is likely to provide more accu-

rate results in such contexts as it incorporates information on

the degree of nestedness/overlap in the region (Quinn &

Harrison, 1988; Hui, 2008). It is already acknowledged that the

choice of sampling design is an important consideration in SAR

studies, and our results provide more evidence for those who

have recently argued for a more consistent SAR theory appli-

cable to general SAR sampling designs (e.g. Whittaker et al.,

2005; He & Hubbell, 2013).
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