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ABSTRACT 

1. Species abundance distributions (SADs) are one of the most widely used tools in macroecology, 
and it has become increasingly apparent that many empirical SADs can best be described as 
multimodal. However, only a few SAD models have been extended to incorporate multiple modes 
and no software packages are available to fit multimodal SAD models. In this study, we present an 
extension of the gambin SAD model to multimodal SADs. 

2. We derive the maximum likelihood equations for fitting the bimodal gambin distribution and 
generalise this approach to fit gambin models with any number of modes. We present these new 
functions, along with additional functions to aid in the analysis of multimodal SADs, within an 
updated R package (‘gambin’; version 2.4.0) that enables the fitting, plotting and evaluating of 
gambin models with any number of modes. 

3. We use a mixture of simulations and empirical datasets to test our new models, including tests of 
the sensitivity of the model parameters to the number of individuals and the number of species in a 
sample. We show that the new multimodal gambin models perform well under a variety of 
circumstances, and that the application of these new models to empirical SAD and other 
macroecological (e.g. species range size distributions) datasets can provide interesting insights. The 
updated software package is simple to use and provides straightforward yet flexible statistical 
analyses of multimodality in SAD-type datasets.  
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INTRODUCTION 

The species abundance distribution (SAD) has been a core focus of macroecology for over eighty 
years (e.g. Fisher, Corbet & Williams 1943), and is currently the subject of widespread renewed 
interest (McGill et al., 2007; Alonso, Etienne & Ostling 2008; Arellano et al., 2017). Recently, it has 
been argued that a gamma-binomial (herein ‘gambin’) distribution represents a useful SAD model 
(Ugland et al., 2007). Gambin is a stochastic unimodal model that combines the gamma distribution, 
in which the scale parameter is fixed at 1, with a binomial sampling method (see Ugland et al., 2007 
for a full description of the model). The use of the gamma distribution as the basis of the model 
provides gambin with substantial flexibility and tests of the gambin model have found that it 
generally provides a good fit to a wide range of empirical SAD data, typically out-performing other 
candidate SAD models (Ugland et al., 2007; Matthews et al., 2014), such as the Poisson lognormal 
(PLN; Bulmer, 1974) and logseries models (Fisher et al., 1943). The model can also be used with 
continuous data, and thus extend the analysis of SADs to different measures of abundances (e.g. 
biomass). The unimodal gambin model has a free parameter (α) that determines the shape of the 
distribution. Low values of α indicate logseries curve shapes, whilst higher α values indicate more 
lognormal-like curve shapes. Thus, α is an intuitive parameter that has been found to be of use in 
comparing the SAD of different ecological communities, e.g. disturbed and undisturbed 
communities, and for testing what variables drive changes in the shape of the SAD along ecological 
gradients (Dornelas, Soykan & Ugland 2011; Matthews & Whittaker, 2015; Arellano et al., 2017; 
Matthews, Borges, de Azevedo & Whittaker 2017). Due to the way the statistical model is defined, 
gambin can only be fitted to data binned into octaves e.g. classes of log2 transformed abundance 
data, with octave 0 containing the number of species with 1 individual, octave 1 the number of 
species with 2 or 3 individuals, and so on. 

It has become increasingly apparent that many empirical SADs can best be described as multimodal 
(Dornelas & Connolly, 2008; Vergnon, van Nes & Scheffer 2012; Antão, Connolly, Magurran, Soares 
& Dornelas 2017). For example, Antão et al. (2017) found that between 15% and 22% of the 117 
empirical SAD datasets they evaluated showed evidence of multimodality, depending on the model 
selection tools used. Multimodality may be indicative of particular process regimes (Matthews, 
Whittaker & Borges 2014) or be due to a combination of different types of species (e.g. trophic 
groups) in a sample, and its detection may also be relevant to, for example, tests of the theory of 
emergent neutrality (Vergnon et al., 2012). Hence, describing and testing for multimodality is a 
priority in SAD research (Antão et al., 2017). To date, few SAD models have been extended to 
incorporate multiple modes (for the PLN see Dornelas & Connolly, 2008), in part because compound 
probability distribution models are mathematically and computationally complex. Hence the need 
for an easy-to-use software package permitting straightforward statistical analysis of multimodality 
in SAD datasets. We set out to provide a multimodal extension of gambin because the gambin model 
is relatively simple and it would allow comparison of the fit of unimodal and multimodal models 
analytically using standard statistical methods.  

First, we derive the maximum likelihood equations for fitting gambin models with any number (g) of 
components and incorporate these new functions, along with additional functions to aid in the 
analysis of multimodal SADs, within an updated version of the R package gambin (version 2.4.0). 
Second, we use a mixture of simulations and empirical datasets to test the new models, providing 
examples of the updated package in operation.  
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MULTIMODAL GAMBIN DISTRIBUTIONS AND THE GAMBIN R PACKAGE (VERSION 2.4.0)  

The full derivation of the likelihood functions for multimodal gambin models is provided in Appendix 
S1 (Supplementary Information). In version 2.4.0 of the gambin R package, the one-component 
gambin model is taken to have two parameters: the shape parameter (α) and the max octave. It 
should be noted that this differs from previous implementations of the model (e.g. Matthews et al., 
2014) that only considered there to be a single parameter (α). The two-component gambin model is 
simply the mixture of two gambin distributions. To allow for the subdivision of all of the observed 
objects (species in the context of SADs) (yobs), a parameter (w1) is needed that describes the fraction 
of objects belonging to the first distribution (wi is analogous to the ρ parameter in the multimodal 
PLN context). The fraction of objects belonging to the second component (w2) is 1 - w1. Thus, the 
expected number of observed objects is split into two components, consisting of w1* yobs and w2* 
yobs  objects, respectively. Thus, yobs = (w1 * yobs) + (w2 * yobs). With no extra information, we may 
therefore assume that the number of objects in the k-th interval (k = 1, 2, ..., i) are w1 * yk and w2 * 
yk. Thus, the likelihood function for a bimodal gambin model contains five parameters: the shape 
parameters for the first and second component (α1 & α2), the max octaves for the first (noct1) and 
second (noct2) components, and one splitting parameter (w1) representing the fraction of objects in 
the first component. Note that this is the same number of parameters in the bimodal PLN model; it 
is simply that the parameters represent different aspects of the distribution in each case. It is 
relatively straightforward to extend the above approach for fitting the two-component gambin 
model by maximum likelihood, to fitting gambin models with g components (where components 
correspond to the number of modes; see Appendix S1). However, whilst it is possible to use the 
equations given in Appendix S1 to fit gambin distributions with any number of components, in 
practice fitting SAD models with more than three (possibly even two depending on sample size) 
components will likely result in overfitting the data. Sample sizes in ecological studies are generally 
relatively small, and the number of parameters becomes large with increasing g (Dornelas & 
Connolly, 2008). Thus, optimising the likelihood functions becomes increasingly problematic at larger 
g; ecological interpretation of model fits with large numbers of components is also problematic. 
Accordingly, we do not advise fitting gambin models with more than three components.  

In addition to providing functions to fit multimodal gambin distributions (described below), the 
gambin R package (version 2.4.0; available on CRAN) has been updated to bring it more in line with 
other distribution functions within the R base ‘stats’ package. For example, the updated gambin 
package now provides dgambin (probability density function), rgambin (generate random values 
from a gambin distribution; the returned values relate to a given octave), qgambin (quantile 
function) and pgambin (cumulative distribution function) functions. Likelihood optimisation is 
undertaken using the Nelder–Mead algorithm. As the likelihood optimisation procedure for 
multimodal gambin models can be time consuming, the updated package provides the option of 
using parallel processing to speed up optimisation. The gambin R package documentation and 
associated vignette provide additional information.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The main function within the package is ‘fit_abundances’: 

#this fits a gambin distribution with g modes to a vector of abundances, 
#with the option of subsampling z individuals. If g is set to 1, the 
#standard unimodal gambin distribution is fitted, g = 2 fits the bimodal 
#gambin distribution, and so on. When the no_of_components argument is 
#greater than 1, the ‘cores’ argument can be used to enable parallel 
#processing using d cores. 

fit_abundances(data, subsample = z, no_of_components = g, cores = d)  

A primary argument for the prevalence of multimodal SADs in nature is the idea that the different 
modes represent different categories of species (e.g. native and invasive species, or core and 
satellite species; Magurran & Henderson 2003; Matthews & Whittaker 2015). A natural next step 
then is to deconstruct the SAD by visualizing and analysing how different categories of species are 
distributed across the various modes / modal octaves. This is performed with the new function 
‘deconstruct_modes’. If species category information is provided (e.g. native or invasive), the 
function returns the number and proportion of the various categories in the different modal octaves 
(a split barplot where the bar for each octave is split according to the number of species in each 
category can also be returned). Subsequent statistical test (e.g. χ2 or G-test) and/or null model tests 
can then be undertaken to determine whether the number of species representing the different 
categories significantly differs between octaves. If species category information is not available, the 
function will simply identify the modal octaves (i.e. the modal octave of each component 
distribution) in a multimodal gambin model fit (user-specified modal octaves can instead be 
provided), and also lists the names of the species within each octave (a plot of the model fit with the 
modal octaves highlighted can also be returned). 

#Fit the bimodal gambin model to SAD data 

fit <- fit_abundances(data, no_of_components = 2)  

#Deconstruct the model fit and calculate the number of species of 
#different categories (categ) in each of the modal octaves (peak_val is 
#set to ‘NULL’ and thus the modal octaves are calculated from the model 
#fit). Return a plot of the model fit with the modal octaves highlighted 
#(plot_modes = TRUE) and run the null model bootstrap sampling with 100 (n 
#= 100) random draws. 

deconstruct_modes(fit, dat = data, peak_val = NULL, categ = “status”, 
plot_modes = TRUE, n = 100) 

One of the main applications of the gambin model has been to fit gambin to SADs from different 
sites (e.g. along a disturbance gradient) and then to compare the resultant alpha values (e.g. 
Dornelas, Soykan & Ugland 2011; Arellano et al., 2017). Thus, we have also added a function that fits 
the unimodal gambin model to the SADs from multiple sites and returns the standardised and 
unstandardised alpha values. 

#Fit the unimodal gambin model to the SADs from multiple sites (mult) and 
#return the standardised (based on N subsamples of size ‘subsample’; NULL 
# = the number of individuals in the site with the fewest individuals) and 
#unstandardised alpha values 

mult_abundances(mult, N = 100, subsample = NULL)  
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EXAMPLES USING EMPIRICAL DATASETS  

A Brazilian horse fly dataset 

To illustrate the new functionality, we used an empirical dataset comprising abundance records of 
horse flies (Diptera, Tabanidae) from a variety of sampling locations in Brazil (see Appendix S2 in the 
Supplementary Information). As outlined above, multimodal SADs may hypothetically arise from the 
intersection in nature of samples from different habitat types or of different ecological species 
groups (Magurran & Henderson, 2003; Antão et al., 2017) within a dataset. To test this proposition, 
we first fitted the unimodal, bimodal and trimodal versions of gambin to the whole Brazilian dataset. 
We then took a subset of the dataset relating to one individual locality within Brazil and one type of 
sampling (see Appendix S2) and again fitted the three models. In both cases the three models were 
compared using the Bayesian information criterion (BIC): 

#load the fly datasets 

data(fly) 

Brazil <- fly[[1]]#select the data for all of Brazil 

Site <- fly[[2]]#select the data for a single site within Brazil 

#Fit the multimodal gambin models to a given dataset (Brazil or site) 

res1 <- lapply(c(1, 2, 3), fit_abundances, abundances = Brazil, subsample 
= 0, cores = 3) 

#calculate and compare the BIC value of the fitted models 
 
vapply(res1, BIC, FUN.VALUE = numeric(1)) 

#plot the empirical SADs 

barplot.gambin(res1[[1]]) 
points.gambin (res1[[1]], pch = 17, col = "black") #add the fitted values 
points.gambin (res1[[2]], pch = 16, col = "blue") 
points.gambin (res1[[3]], pch = 18, col = "green") 

 

When the three models were fitted to the whole Brazilian horse fly dataset (Fig. 1a), the bimodal 
gambin model provided the best fit to the data (BIC = 830.4), followed by the unimodal model (BIC = 
832.5) and the trimodal model (BIC = 837.6). When the three models were fitted to the subset of 
data from a single site (Fig. 1b), the unimodal model provided the best fit (BIC = 236.2), followed by 
the bimodal model (BIC = 239.9) and the trimodal model (BIC = 246.5). Thus, whilst the data from a 
single site are characterised by a classical unimodal SAD, when pooling records from different 
localities across Brazil, the bimodal model was favoured. These findings provide additional support 
for the claim that multimodal SADs are more prevalent with increasing taxonomic breadth, sampling 
variation, spatial extent (i.e. increasing ecological heterogeneity; Antão et al., 2017), and 
heterogeneity in species detectability (Alonso et al. 2008). 
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A set of 275 woody plant SADs  

We took the set of 843 angiosperm woody plant datasets sourced from the literature by Kubota et 
al. (2018). Each dataset represents an abundance vector of plant species sampled in a forest plot and 
the datasets have a global distribution. We filtered out datasets with <10 species and <500 
individuals. We then fitted the unimodal and bimodal gambin models to the resulting 275 datasets 
and compared the fits using BIC. The bimodal model was considered as the best fitting model if it 
had the lowest BIC value and the unimodal model had a ΔBIC value of >2.0 (a lower value indicates 
the models have similar support, in which case the unimodal model should be preferred on grounds 
of parsimony).  

The bimodal model provided the best fit to 51 of the 275 datasets (19%; see Appendix S3 for the full 
model comparison results). 

 

Application to other macroecological phenomena 

Whilst gambin models have so far only been used to analyse SADs, it is possible to fit them to any 
other type of ecological or general distribution. For example, there is evidence that some species-
range size distributions may exhibit multimodality (e.g. see Gaston, 2003, p. 80). As an illustration, 
we fitted a selection of gambin models to the global range size distribution of 167 marine mammal 
species, and the occupancy distribution of intestinal helminths in three species of grebe; we observe 
evidence of multimodality in both distributions. The full methods and resultant model fits are 
provided in Appendix S3. 

 

SIMULATION ANALYSES 

The results of our simulations indicated that in general the α parameter estimates of the bimodal 
gambin model were relatively insensitive to the number of species in the sample (Figure S2, 
Appendix S4).  

In contrast, it was found that the α parameter estimates of the bimodal gambin model were 
sensitive to the number of individuals in a sample (Figs S3 and S4, Appendix S4). The latter is true of 
most SAD models (see McGill, 2011) and is worrying given that SAD analyses typically involve small 
datasets. While this sensitivity is problematic for unimodal gambin, it is less of an issue for 
applications of the bimodal model. With the unimodal gambin model, the α value can be used as a 
type of diversity metric to compare SAD shape across communities (e.g. Arellano et al., 2017). 
However, for multimodal gambin models the meaning of the α values is not as clear, and as such, 
when fitting multimodal gambin models we do not advise using the α parameter estimates as 
diversity metrics or as response variables in regression-type comparative analyses. Rather, the 
benefit of multimodal gambin models is to provide a simple, quick and easy to use test for 
determining whether empirical SADs are multimodal, and to provide a basis for subsequent 
deconstruction analysis to examine the identities of species within the octaves. 
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To test the error rate of our models, we simulated unimodal and bimodal gambin SADs using 
multiple simulations varying the numbers of individuals and species (Appendix S4), fitting both 
unimodal and bimodal gambin models to the simulated data. We compared models using BIC and 
calculated the proportion of times that a bimodal model provides a better fit than a unimodal model 
to a unimodal dataset (i.e. false positive) and the proportion of times a unimodal model provides a 
better fit than a bimodal model to a multimodal dataset (i.e. false negative). When a unimodal 
gambin distribution was simulated, the error rate (false positive) was roughly 7.0% (see Appendix 
S4). When a bimodal gambin distribution was simulated, the mean error rate depended on the 
sample size and the difference between the α1 and α2 values in the simulated data (Fig. 2). When 
the difference between α1 and α2 was relatively large, the error rate was very low (e.g. 0%) 
regardless of the number of species in the sample. In contrast, when the difference between the α1 
and α2 values was very small, the error rate was high (e.g. 81%) regardless of the number of species. 
The fact that the error rate increases as the components become closer together (Fig. 2) is to be 
expected, as the underlying sample distribution starts to resemble a unimodal distribution. As most 
empirical multimodal SADs have distinct rarer and more common species modes, this is not a 
substantive issue. The approach can be considered conservative in that the model comparison test is 
slightly biased towards selecting the unimodal model over the multimodal model. 

A full outline of the methodology, results and discussion for each of the simulations, along with a 
more detailed discussion, is provided in Appendix S4 in the Supplementary Information. All analyses 
were undertaken in R (version 3.4.3; R Core Team, 2017). 

 

CONCLUDING REMARKS 

In this paper, we have derived the maximum likelihood equations for gambin models with multiple 
components and integrated these functions into an updated version of the ‘gambin’ R package 
available on CRAN. Due to the relatively simple underlying mathematics and binning procedure, the 
models are easy to fit and the maximum likelihood estimation procedure does not require the user 
to vary the starting parameter values or the optimisation algorithm employed. Hence, multimodal 
gambin models represent a novel, easily applied test for determining whether SADs or certain other 
macroecological datasets exhibit multimodality. We have also provided a number of additional 
functions to aid in the analysis of multimodal SADs. 

As Antão et al. (2017, p. 203) state, “multimodality occurs with a prevalence that warrants its 
systematic consideration when assessing SAD shape and emphasizes the need for macroecological 
theories to include multimodality in the range of SADs they predict.” The development of 
multimodal gambin models provides one tool to undertake these types of analyses. Application of 
these new models to additional datasets will likely be revealing and will help in improving our 
understanding of multimodality in SADs and possibly in other macroecological data forms.  
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SUPPORTING INFORMATION 
 
Please see the online Supporting information tab for this article. 

 
FIGURES 

FIGURE 1 The fit of the unimodal (blue circles), bimodal (red triangles) and trimodal (black 
diamonds) gambin models to two horse fly species abundance distribution datasets (black bars) from 
Brazil. (a) horse fly data from 33 localities across Brazil (number of unique species = 164; total 
number of individuals = 78,755), and (b) data from one individual locality and one type of sampling 
(number of unique species = 58; total number of individuals = 1943; see Appendix S3). In (a) the 
bimodal model provides the best fit according to BIC, whilst the unimodal model provided the best 
to (b). 

 

FIGURE 2 The multimodal SAD error rate (expressed as a percentage) for an information theoretic 
model comparison test. For the test, a bimodal SAD was simulated, with one α parameter fixed at 
0.5 and the second (α2) set to vary between 2 and 10 in units of 1. The number of species (sample 
size) was set to: 50, 100, 200, 500. The unimodal and bimodal gambin models were then fitted to 
this simulated SAD and the best model fit determined using BIC. The error rate percentage relates to 
the proportion of times the unimodal model provided a better fit than the bimodal model (i.e. a 
higher error rate percentage indicates that the unimodal model erroneously provided a better fit to 
the bimodal SAD).  

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 


