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Ecological systems are the quintessential complex systems, involving numerous

high-order interactions and non-linear relationships. The most used statistical modeling

techniques can hardly accommodate the complexity of ecological patterns and

processes. Finding hidden relationships in complex data is now possible using massive

computational power, particularly by means of artificial intelligence and machine learning

methods. Here we explored the potential of symbolic regression (SR), commonly used

in other areas, in the field of ecology. Symbolic regression searches for both the formal

structure of equations and the fitting parameters simultaneously, hence providing the

required flexibility to characterize complex ecological systems. Although the method

here presented is automated, it is part of a collaborative human–machine effort and

we demonstrate ways to do it. First, we test the robustness of SR to extreme levels

of noise when searching for the species-area relationship. Second, we demonstrate

how SR can model species richness and spatial distributions. Third, we illustrate how

SR can be used to find general models in ecology, namely new formulas for species

richness estimators and the general dynamic model of oceanic island biogeography.

We propose that evolving free-form equations purely from data, often without prior

human inference or hypotheses, may represent a very powerful tool for ecologists and

biogeographers to become aware of hidden relationships and suggest general theoretical

models and principles.

Keywords: artificial intelligence, ecological complexity, evolutionary computation, genetic programming, species

richness estimation, species-area relationship, species distribution modeling, symbolic regression

INTRODUCTION

Complexity is a term often used to characterize systems with numerous components interacting in
ways such that their collective behavior is difficult to predict, but where emergent properties give
rise to patterns, more or less simple but seldom linear (Table 1) (Holland, 1995; Mitchell, 2009).
Complex systems science is therefore an effort to understand non-linear systems with multiple
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TABLE 1 | Glossary of terms.

Artificial Intelligence (AI)–A scientific field concerned with the automation

of activities we associate with human thinking (Russell et al., 2010).

Big data–Very large amount of structured or unstructured data, hard to

model with general statistical techniques but with the potential to be mined

for information.

Complex system–A system in which a large network of components

organize, without any central controller and simple although non-linear rules

of operation, into a complex collective behavior that creates patterns, uses

information, and, in some cases, evolves, and learns (Mitchell, 2009).

General model–An equation that is found to be useful for multiple

datasets, often but not necessarily, derived from a general principle. In most

cases the formal structure of equations is kept fixed, while some

parameters must be fitted for each individual dataset.

General principle–Refers to concepts or phenomenological descriptions

of processes and interactions (Evans et al., 2013). May not have direct

translation to any general model, but be a purely conceptual abstraction.

Genetic programming (GP)–A biologically-inspired method for getting

computers to automatically create a computer program to solve a given

problem (Koza, 1992). It is a type of evolutionary algorithm, where each

solution to be tested (individual in a population of possible solutions) is a

computer program.

Pareto front–A curve connecting a set of best solutions in a multi-objective

optimization problem. If several conflicting objectives are sought (e.g.,

minimize both error and complexity of formulas), the Pareto front allows

visualizing the set of best solutions (Smits and Kotanchek, 2005).

Symbolic regression (SR)–A function discovery approach for modeling of

multivariate data. It is a special case of genetic programming, one where

possible solutions are equations instead of computer programs.

connected components and how “the whole is more than
the sum of the parts” (Holland, 1998). Biological systems
probably are among the most complex (Solé and Goodwin,
2000), and among them, ecological systems are the quintessential
complex systems (Anand et al., 2010). These are composed of
individuals from different species, interacting and exchanging
energy in multiple ways, furthermore, relating with the physical
environment at different spatial and temporal scales in non-
linear relationships. Consequently, ecology is dominated by
idiosyncratic results, with most ecological processes being
contingent on the spatial and temporal scales in which they
operate. This makes it difficult to identify recurrent patterns,
knowing also that pattern does not necessarily identify process
(Lawton, 1996; Dodds, 2009; Passy, 2012). The most used
exploratory (e.g., principal component analysis) and statistical
modeling techniques (e.g., linear and non-linear regressions)
can hardly reflect the complexity of ecological patterns and
processes, often failing to find meaningful relationships in data.
More flexible techniques, such as generalized additive models
(GAMs), usually do not allow an easy interpretation of results
and particularly of putative causal relationships (e.g., Sugihara
et al., 2012). For ecological data, we require more flexible and
robust, yet amenable to full interpretation, analytical methods,
which can eventually lead to the discovery of general principles
and models.

The aim of any ecological principle is to provide a robust
model for exploring, describing, and predicting ecological

processes regardless of taxon identity and geographic region
(Lawton, 1996; Dodds, 2009). Finding a recurrently high
goodness-of-fit for a model to an ecological pattern for most taxa
and ecosystems is usually a compelling evidence of a mechanistic
process controlling that pattern. When general principles are
translated into robust models, general statistical methods are
mostly abandoned in favor of these, of which only few examples
exist in ecology (Data Sheet 1). Such general, widely applicable
equations are mostly found by intellectual tour de force. Yet,
they are only the tip of the iceberg, usually incorporating few of
the variables increasingly available to ecologists and that could
potentially explain such patterns.

The automation of techniques for collecting and storing
ecological and related data, with increasing spatial and temporal
resolutions, has become one of the central themes in ecology and
bioinformatics. Yet, automated and flexible ways to synthesize
such complex and big data were mostly lacking until recently
(Martin et al., 2018; Chen et al., 2019; Desjardins-Proulx et al.,
2019). Finding hidden relations within such data is now possible
using massive computational power. New computer-intensive
methods have been developed or are now available or possible
(Reshef et al., 2011), including the broad field of artificial
intelligence (AI) or machine learning (ML) which have produced
a variety of approaches (Lu, 2019). Artificial intelligence includes
a series of evolution-inspired techniques, brought together in the
sub-field of evolutionary computation, of which the most studied
and well-known probably are genetic algorithms (Holland, 1975).
Genetic programming, namely in the form of symbolic regression
(SR) (Koza, 1992), is a derivation of genetic algorithms that
searches the space of mathematical equations without any
constraints on their form. Hence, it provides the required
flexibility to represent complex systems as presented by many
ecological systems (Figure 1). Contrarily to traditional statistical
techniques, symbolic regression searches for both the formal
structure of equations and the fitting parameters simultaneously
(Schmidt and Lipson, 2009). Finding the structure of equations
is especially useful to discover general models, providing insights
into the processes and eventually leading to the discovery of new
and yet undiscovered principles. Fitting the parameters provides
insight into the raw data and allow for specific predictions.
Successful examples on the use of SR in ecology include modeling
of land-use change (Manson, 2005; Manson and Evans, 2007),
effects of climate change on populations (Tung et al., 2009; Larsen
et al., 2014), community distribution (Larsen et al., 2012; Yao
et al., 2014), predicting micro-organismal blooms (Muttil and
Lee, 2005; Muttil and Chau, 2006; Jagupilla et al., 2015; Tromas
et al., 2017), deriving vegetation indices (Almeida et al., 2015),
forecasting the trophic evolution of lakes (Bertoni et al., 2016),
using parasites as biological tags (Barrett et al., 2005), and even
to revisit classical ecological models such as the Lotka–Volterra
predator–prey equation (Martin et al., 2018; Chen et al., 2019).

The goal of this work is to explain, test, and show the
usefulness of SR in uncovering hidden relationships within
typical ecological datasets. To illustrate this, we used five case
studies reflecting typical analytical problems faced by ecologists.
In the first example, (i) we test the robustness of SR when finding
the power law applied to the species-area relationship (SAR) with
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FIGURE 1 | Schematic representation of the symbolic regression workflow.

The basic representation is a parse-tree where building blocks such as

variables (in this case: x1, x2), parameters (integers or real numbers), and

operators (e.g., +, –, ×, ÷) are connected forming functions (in parenthesis

under the first line of trees). Initial equations are generated by randomly linking

different building blocks. Equations are combined through crossover, giving

rise to new equations with characteristics from both parents (arrows linking the

first and second rows of trees). Equations with better fitness (e.g., R2) have

higher probabilities of recombining. To avoid loss of variability, a mutation step

is added after crossover (arrows linking the second and third rows of trees).

After multiple generations, evolution stops and a set of free-form equations

best reflecting the input data is found.

extreme levels of noise, even beyond the high levels typical of
ecological datasets. In the next two examples, we demonstrate
how SR can deal with complex datasets, namely to model (ii)
species richness; and (iii) species spatial distributions. Finally, we
illustrate how SR can be used to find general models in ecology,
by using it to develop new formulas for (iv) species richness
estimation; and v) the general dynamic model of oceanic island
biogeography (GDM).

GENERAL METHODOLOGY

Symbolic regression works as a computational parallel to
the evolution of species. A population of initial equations is
generated randomly by combining different building blocks, such
as the variables of interest (independent explanatory variables),
algebraic operators (e.g., +, –, ÷, ×), analytic function types
(exponential, log, power, etc.), constants and other ways to
combine the data (e.g., Boolean or decision operators) (Figure 1).
Being random, these initial equations almost invariably fail
in describing the patterns or phenomena of interest, but
some equations are slightly better than others. All are then
combined through crossover, giving rise to new equations with
characteristics from both parents. Equations with better fitness—
as estimated using a chosen statistical measure such as R2 or
Akaike’s Information Criterion (AIC; Akaike, 1974)—have a
higher probability of recombining. To avoid new equations being
bounded by initially selected building blocks or quickly losing
variability along the evolutionary process, a mutation step (acting

FIGURE 2 | Example of a Pareto front depicting error vs. complexity. This

example reflects a symbolic regression search of the best species–area

relationship for native spiders in the Azores (Portugal). The second formula is

clearly the most promising, with both high accuracy (low error) and low

complexity. In many occasions a single formula is not clearly best, in which

case weights can be given to each of them through indices that simultaneously

positively weight accuracy and negatively weight complexity (such as AIC or

BIC) and/or multiple formulas presented as possible outcomes.

on any building block) is added to the process after crossover.
After multiple generations, an acceptable level of accuracy by
some of the equations is often attained and the researcher stops
the process.

For this work we used the software Eureqa (Nutonian, Inc)
(Schmidt, 2015), which provides an intuitive interface suitable
also for non-expert SR users (Dubčáková, 2011). Although a
commercial version is available, we used the freely available test
version for all analyses. For each run, the software outputs a
list of equations along an error/complexity Pareto-front (Smits
and Kotanchek, 2005), with the most accurate equation for each
level of complexity being shown (Figure 2). For the SR search
we used only algebraic and analytic operators (+, –, ÷, ×, log,
power) in all examples below, so that outputs could bemost easily
interpreted. The goodness-of-fit was evaluated using R2 or AICc,
depending on the question (see below). The Pareto-front often
presents an “elbow,” where near-minimum error meets near-
minimum complexity. The equation in this inflection is closer to
the origin of both axes and is a good starting point for further
investigation—if both axes are in comparable qualitative scales.
Often, however, this inflection point is not obvious, and a single
formula is not clearly best. In such cases, weights can be given
to each of them through indices that positively weight accuracy
and negatively weight complexity, such as AICc (Akaike, 1974).
However, in all cases it is important to check all formulas along
the Pareto-front. Often equations ormodels thatmake immediate
sense to the specific question may not be detected by these
automated methods.

Each of the five case studies was analyzed independently and
using different approaches to test the performance of SR against
other methods. We often opted to use fully independent datasets
for three reasons. First, we were looking for general formulas,
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which should be tested against fully independent data. Second, it
was a much more powerful and convincing way to demonstrate
themethod than using subsets of the same data, which necessarily
have some common ground that facilitates the job of anymethod.
Third, our datasets, as typical for many in ecology, often had very
few observations, making it hard to do sub-setting in few cases.

CASE-STUDIES

Finding the Species-Area Relationship
(SAR) With Extreme Levels of Noise
Typical ecological datasets not only have few data points, but
these are prone to varying levels of noise. Noise can be due to
natural phenomena, such as spillover from neighboring regions,
unpredictable weather events, etc., lack of the most appropriate
data to model the phenomena, or simply errors in measuring or
sampling. Testing any novel method to its robustness to different
sources and levels of noise is therefore imperative.

One of the most studied examples of SARs is their application
to island biogeography (ISAR). The shape of ISARs has been
modeled by many functions, but three of the simplest seem to
be preferred in most cases, the power, exponential, and linear
models (Triantis et al., 2012) (Data Sheet 1). The power model
in particular includes island area (A) and two fitting parameters,
c (the intercept) and z (the scaling of richness with area)
(Data Sheet 1). Here we created 30 fictional islands each one
corresponding to one of the 30 possible combinations resulting
from five different areas (10, 100, 1000, 10,000, and 100,000 km2),
two typical values for c (1 and 10), and three typical values for z
(0.2, 0.3, and 0.4). We then simulated sampling from these 30
islands, each with a sampled richness equal to the multiplication
of the true richness value by five different levels of noise as
given by the standard deviation of a sampling from a normal
distribution with mean = 1 and sd = 0, 0.1, 0.2, 0.4, and 0.8.
The theoretical richness of each island was then multiplied by
10 simulations of each noise level using this approach, providing
a total of 50 search trials (Data Sheet 2). We must emphasize
that with sd = 0.8 the noise was extreme and unreasonable,
with for example islands predicted to have 100 species presenting
anything between 0 and 199 species after noise was added. We
evaluated the ability of SR to develop the power law by counting
at each noise level how many times the usual formulation and
a derivation without the intercept c were found among the 10
searches per level.

Our simulations using SR were able to find the power-law of
the SAR even with the most extreme scenarios (Data Sheet 2).
From 100% success rate with sd = 0 or 0.1, to 70% with sd =

0.2, 50% with sd = 0.4, and 40% with sd = 0.8. If we include the
simpler formulation with no intercept, success rate was 100, 100,
100, 90, and 80%, respectively for sd= 0, 0.1, 0.2, 0.4, and 0.8.

Modeling Species Richness
Modeling and mapping the species richness of high diversity
taxa at regional to large scales is often impossible without
extrapolation from sampled to non-sampled sites. Here, we
used an endemic arthropod dataset collected in Terceira Island,
Azores. Fifty-two sites were sampled using pitfall traps for

epigean arthropods (Cardoso et al., 2009), 13 in each of four
land-use types: natural forest, exotic forest, semi-natural pasture,
and intensively managed pasture. In this problem, given the size
of the dataset, we used a 5-fold cross validation. We explained
and predicted species richness per site using elevation, slope,
annual average temperature, annual precipitation, and an index
of disturbance with values ranging from 0 (absence of human
presence) to 100 (dense urban environment) (Cardoso et al.,
2013). For SR we ran each fold five times tominimize the risk that
the formulas found represented local optima. We then reported
the average and range of R2 and AICc of the five partitions for
both the training and test data.

As the response variable was count data, Generalized Linear
Models (GLM) and Generalized Additive Models (GAM) with
a Poisson error structure and a log link were used. We used
the package MuMIn (Barton, 2015) and the R environment (R
Core Team, 2015) for multi-model inference based on AICc
(Hurvich and Tsai, 1989) values, using all variables plus all
possible interactions for GLM. For fitting GAM, we used package
gam (Hastie, 2015). The R2 goodness of fit was used as the fitness
measure. For each run of the SR (25 in total) we picked the
formula at the inflection point of the Pareto-front (Data Sheet 2).
Both R2 and AICc were used to compare GLM and GAMwith SR
on the test datasets.

The model selected by GLM in all five k-folds was:

S = e(a+bH -cP - dD)

where H = altitude, P = precipitation, D = disturbance; a, b,
c, and d are fitting parameters with mean a = 1.894 (range:
1.116–2.577), mean b= 0.00419 (range: 0.00360–0.00574), mean
c = 0.000972 (range: 0.000726–0.001212), and mean d =

0.0251 (range: 0.0118–0.0331). The mean training R2 = 0.529
(range: 0.469–0.573) and mean training AICc = 104.151 (range:
103.055–105.634). The mean testing R2 = 0.528 (range: 0.313–
0.770) and mean testing AICc= 45.340 (range: 41.913–48.513).

The results of GAM were similar to the GLM, the algorithm
selecting the most parsimonious formulation equivalent to a
GLM. The SR results performed considerably better than GLM
or GAM with a much simpler formula using a single variable
(Disturbance) and much better training and testing results, with
23 out of 25 formulas chosen being in the form:

S = (a/D)− b

where a and b were fitting parameters with mean a = 140.787
(range: 134.700–145.775) and mean b = 1.325 (range: 1.078–
1.483). The mean training R2 = 0.603 (range: 0.576–0.644)
and mean training AICc = 52.631 (range: 47.982–56.985).
The mean testing R2 = 0.601 (range: 0.449–0.737) and mean
testing AICc = 19.088 (range: 13.042–23.432). We should
emphasize the simplicity of interpretation of this formula,
indicating that species richness essentially was inversely related
with disturbance.

Modeling Species Distributions
Species distribution modeling (SDM) is one of the most widely
used correlative statistical approaches to biodiversity assessment,
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FIGURE 3 | Predicted distribution of two Azorean arthropods using three modeling methods. Observed locations (white dots) and predicted distribution (dark green

areas) of Alestrus dolosus (Coleoptera, Elateridae) and Canariphantes acoreensis (Araneae, Linyphiidae) in the island of Terceira (Azores, Portugal) using logistic

regression, maximum entropy, and symbolic regression.

for example to fill gaps in our knowledge on individual
species distributions, predict species response to climate change,
and the spread of invasive species (Araújo et al., 2019). As
a case study, we modeled the potential distribution of two
endemic Azorean species in Terceira Island: the rare forest click-
beetle Alestrus dolosus (Crotch) (Coleoptera, Elateridae) and
the abundant but mostly forest-restricted spider Canariphantes
acoreensis (Wunderlich) (Araneae, Linyphiidae). We compared
the performance of logistic regressions (GLM with a binomial
error structure) and maximum entropy models (Maxent; Phillips
et al., 2006) in predicting the distribution of the two species,
to that of SR. GLM and MaxEnt are two of the most widely
used approaches for SDM (Elith et al., 2006). Given the intrinsic
differences betweenmethods, we had to use different background
datasets (Data Sheet 3). Maxent used the environmental maps of
the islands with a resolution of 100m, from where it extracted
pseudo-absences. We then converted the probabilistic potential
distribution maps to presence/absence using the maximum
value of training sensitivity plus specificity as the threshold
as recommended by Liu et al. (2005). Logistic regression and
SR used presence/absence data from the 52 sampled sites. We
conducted multi-model inference of logistic regression based on
AICc values. In the SR run we included a step function, so that
positive and negative values were converted to presence and
absence (binary output), respectively. Absolute error, reflecting
the number of incorrect classifications, was used as the fitness
measure. As inflection points of the Pareto fronts were clear,
the best SR formula for each species was chosen based on
them (Data Sheet 2). Given the scarcity of occurrences of species
in the dataset (from 10 to 35% of the data points) we opted

for a balanced split of 50% for training and test sets. In all
cases only the training data (26 sites) were used to obtain the
models. Logistic GLM, Maxent, and SR were compared in their
performance for predicting presence and absence of species on
the 26 test sites using the Sensitivity, Specificity, and True Skill
Statistic (TSS) (Allouche et al., 2006).

The potential distribution models were relatively similar
for C. acoreensis but show marked differences for A. dolosus
(Figure 3). Symbolic regression outperformed both other models
for A. dolosus and was as good as Maxent for C. acoreensis,
with both outperforming logistic regression (Table 2). The SR
models were not only the best, presenting maximum values
for TSS, but were also the easiest to interpret. A. dolosus was
predicted to have adequate environmental conditions in all
areas above 614m elevation, being restricted to pristine native
forest. Canariphantes acoreensis could potentially be present in
all areas with disturbance values below 41.3, occurring not only
in native forest but also in adjacent semi-natural grassland and
humid exotic forest. The logistic regression and Maxent models
used a large number of explanatory variables for A. dolosus yet
performed worse on the test data than did SR (Table 2).

Developing Species Richness Estimators
Several asymptotic functions have been used to estimate species
richness (Soberón and Llorente, 1993), including the Clench
function (Clench, 1979), the negative exponential function, and
the rational function (Ratkowsky, 1990) (Data Sheet 1). We used
SR to rediscover or eventually find novel asymptotic models
that would outperform them. Two independent datasets were
used resulting from exhaustive and standardized sampling for
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TABLE 2 | Species distribution models for two endemic arthropod species on the island of Terceira (Azores, Portugal).

Model Formula Sensitivity Specificity TSS

Alestrus dolosus

Logistic regression 1/(1 + e−8469+0.432P +540.7T) 0 1 0

Maxent Uses all variables but Sl, main is D (contribution = 74.1%) 0.5 1 0.5

Symbolic regression step (H−614) 1 0.75 0.75

Canariphantes acoreensis

Logistic regression 1/(1 + e−3.617+0.103D) 0.667 0.7 0.367

Maxent Uses only D (contribution = 100%) 0.833 0.65 0.483

Symbolic regression step (41.3–D) 0.833 0.65 0.483

Accuracy statistics on an independent test dataset are given by the True Skill Statistic (TSS). H = altitude, Sl = slope, T = average annual temperature, P = annual precipitation, and D

= disturbance index. The step function in symbolic regression converts positive values inside parentheses to presence and negative values to absence. Best values in bold.

spiders in 1 ha plots, performed by 8 collectors during 320 h
of sampling in a single hectare using five different methods
(so-called sampling protocol “COBRA”—Conservation Oriented
Biodiversity Rapid Assessment; Cardoso, 2009). The training
dataset was from amixed forest in Gerês (northern Portugal) and
the test dataset was from a Quercus forest in Arrábida (southern
Portugal) (Cardoso et al., 2008a,b).

Randomized accumulation curves for both sites were
produced using the R package BAT (Cardoso et al., 2015). The
true diversity of each site was calculated as the average between
different non-parametric estimators (Chao 1 and 2, Jackknife 1
and 2). Because the sampled diversity in the training dataset
reached a very high completeness but we wanted to simulate
typically very incomplete sampling, datasets with 10, 20, 40, 80,
and 160 randomly chosen samples were extracted and used, in
addition to the complete 320 samples dataset, as independent
runs in SR. Squared error was used as the fitness measure.
Additionally, we imposed a strong penalty to non-asymptotic
functions, although these were still allowed in the search process
(see Data Sheet 2 for details). The weighted and non-weighted
scaled mean squared errors implemented in BAT (Cardoso et al.,
2015) were used as accuracy measures.

For the training dataset, one asymptotic model was found by
SR (Data Sheet 2):

S =
aQ

b+ Q

where a and b were fitting parameters. This model was in fact
the Clench model with a different formulation (Data Sheet 1),
where the asymptote was a. A second, slightly more complex but
better fitting, model was found for partial datasets with 40 or
more samples:

S =
c+ aQ

b+ Q

where c is a third fitting parameter. The asymptote was again
given by the value of a (Figure 4). This model was similar to the
rational function (Data Sheet 1). It was found to outperform the
Clench and negative exponential for both the training and testing
datasets (Table 3).

FIGURE 4 | Accumulation curve for spider sampling in Gerês (Portugal). The

result of searching for the best fitting asymptotic formula using symbolic

regression is also shown.

Developing the General Dynamic Model of
Oceanic Island Biogeography (GDM)
The general dynamic model of oceanic island biogeography
(GDM) was proposed to predict the responses of the key
processes of immigration, speciation and extinction in
volcanic islands, recognizing the role of geological processes
in driving diversity on oceanic islands (Whittaker et al., 2008).
Traditionally, the GDM is tested using a model where island
species diversity is regressed as a function of area and age.
Several different equations have been found to describe the
GDM, extending the different SAR models with the addition
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TABLE 3 | Comparison of three asymptotic equations used to estimate spider

species richness in two forest sites.

Model Raw accuracy Weighted accuracy

Gerês (training)

Observed 0.113 0.037

Clench 0.055 0.018

Negative exponential 0.115 0.049

Rational function 0.045 0.012

Arrábida (testing)

Observed 0.103 0.031

Clench 0.038 0.010

Negative exponential 0.092 0.037

Rational function 0.032 0.008

See Data Sheet 1 for formulas. Raw accuracy is the scaled mean squared error

considering the entire observed accumulation curve (each formula was fitted to the curves

using 4–320 samples) and weighted accuracy is this value weighted by the sampling effort

at each point in the curve (where effort is the ratio between number of individuals and

observed species richness). Note that lower values (in bold) are better as they reflect the

deviation from a perfect estimator.

of a polynomial term using island age and its square (TT2),
depicting the island’s ontogeny. The first to be proposed was an
extension of the exponential model (Whittaker et al., 2008), the
power model extensions following shortly after (Fattorini, 2009;
Steinbauer et al., 2013).

Our objective was to test if we could re-discover or eventually
refine existing models for the ISAR and GDM from data alone.
We used the Azores and Canary Islands spiders (Cardoso et al.,
2010) as training data. To independently test the generality of
models arising from spider data, we used bryophyte data from the
same archipelagos (Aranda et al., 2014). The area and maximum
time since emergence of each island were used as explanatory
variables and the native species richness per island as the response
variables (Data Sheet 4). The R2 value was used as the fitness
measure. The best SAR and GDM equations found by SR were
chosen based on the inspection of the Pareto front (Data Sheet 2)
but looking also for interpretability of the models. These were
then compared with the existing models using AICc and the R
package BAT (Cardoso et al., 2015).

For the Azorean spiders, the best fitting previous model (both
highest R2 and lowest AICc) for the ISAR was the exponential
model (Table 4). The SR run discovered roughly the same model,
indicating, however, that the intercept (c term) was adding
unnecessary complexity. A similar ranking of models was verified
for bryophytes in the same region, revealing the robustness of the
new model.

For the Canary Islands, the best model for spiders was a linear
function of area:

S = 75+ 0.047A

(R2 = 0.364, AICc = 65.631). Although it was easy to interpret,
the explained variance was relatively low. The SR run reached a
much higher explanatory power:

S = 112− 1.002A

(R2 = 0.806, AICc = 57.320). In this case though, the equation
was over-fitting to the few available data (7 data points), as this
function was erratic creating a biologically indefensible model.
The reason the ISAR was hard to model for the Canary Islands
spiders was because we were missing the major component Time
(Cardoso et al., 2010). This was depicted by the GDM, of which
the best of the current equations was found to be the power
model described by Fattorini (2009) (Table 4). Nevertheless,
using SR we were able to find an improved, yet undescribed,
model (Table 4). This represented a general model expanding the
linear SAR:

S = c + zA + XT – yT2

When tested with Canarian bryophytes, this new formulation wss
almost as good as the power model (Table 4).

DISCUSSION

Symbolic regression has the advantage over most standard
regression methods (e.g., GLM) of being more flexible, allowing
a good fitting to data with better interpretability, since results are
in the form of mathematical formulas. GLMs and other similar
techniques assume linear relations between variables or require
a priori knowledge on the form of the relation (e.g., quadratic,
cubic, interactions between variables, etc.).

SR also has one or more advantages over other, commonly
used, highly flexible regression (e.g., GAMs) or machine learning
techniques (e.g., neural-networks): (1) numerical, ordinal, and
categorical variables are easily combined; (2) redundant variables
are usually eliminated in the search process and only the most
important are retained if anti-bloat measures (intended to reduce
the complexity of equations) are used. Incidentally, this also
releases the user from the problem of dealing with collinearity
(Dormann et al., 2013); (3) the evolved equations are human-
readable and interpretable; and (4) solutions are easily applied to
new data.

Using SR, we were able to “distill” free-form equations and
models that not only consistently outperform but are more
intelligible than the ones resulting from rigid methods, such as
GLM, or “black-boxes,” such as Maxent. This was the case for
both species richness and distribution models.

We were also able to re-discover and refine equations for
estimating species richness based on sampling curves and the
ISAR and GDM from data alone. All the examples presented
in this work suggest that evolving free-form equations purely
from data, often without prior human inference or hypotheses,
may represent an under-explored but very powerful tool for
ecologists and biogeographers, allowing the finding of hidden
relationships in data and suggesting new ideas to formulate
general theoretical principles.

The idea that SR is a powerful tool for reverse-engineering
ecological theory from data is not new. Many examples reviewed
in the introduction suggest that different authors across disparate
disciplines understand this date back to the early 2000s. Recently,
the potential of SR in ecology was discussed in two essays that
showed how SR can be used to develop classic demographic time
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TABLE 4 | Species area relationship (SAR) models for Azorean taxa and General Dynamic Models (GDM) of oceanic island biogeography for Canarian taxa.

Model Formula R2 AICc

SAR Azorean Spiders (training)

Power S = 13.379A0.438 0.642 32.505

Exponential S = 0.549 + 4.538 logA 0.780 28.102

Linear S = 19.357 + 0.017A 0.435 36.604

SR S = 4.641 logA 0.780 23.319

SAR Azorean Bryophytes (testing)

Power S = 181.625A0.803 0.666 78.085

Exponential S = −27.824 + 57.114 logA 0.728 76.208

Linear S = 196.215 + 0.259A 0.617 79.295

SR S = 51.889 logA 0.722 71.617

GDM Canarian Spiders (training)

Whittaker S = −185.589 + 41.732 logA + 17.776T – 1.022T2 0.873 110.350

Fattorini logS = 2.585 + 0.281 logA + 0.157T – 0.009T2 0.941 105.025

Steinbauer logS = 3.367 + 0.098 logA + 1.502 logT – 0.454 logT2 0.814 113.007

SR S = 42.283 + 0.051A + 17.379T – T2 0.952 61.505

GDM Canarian Bryophytes (testing)

Whittaker S = −176.599 + 66.602 logA + 21.361T – 1.620T2 0.773 125.214

Fattorini logS = 4.544 + 0.137 logA + 0.126T – 0.009T2 0.803 124.217

Steinbauer logS = 5.136 + 0.017 logA + 1.063 logT – 0.382logT2 0.612 128.963

SR S = 192.660 + 0.075A + 20.702T – 1.576T2 0.785 124.841

S = native species richness; A = area of the island; T = maximum time of emergence. Best models are indicated in bold.

series from data (Martin et al., 2018; Chen et al., 2019). Yet, our
study is the first to bring together all these disparate applications,
demonstrating the versatility of this tool by applying it to a range
of diverse ecological and evolutionary problems, both theoretical
and practical. These results suggest that the true potential for the
use of SR in ecology and evolution is yet to be fulfilled.

From Particular to General Principles
Scientific fields such as physics rarely rely on general statistical
inference methods such as linear regression for hypothesis
testing. The complexity of ecology made such methods an
imperative in most cases. Symbolic regression not only allows
the discovery of relationships specific to particular datasets, but
also the finding of general models, globally applicable to multiple
systems of particular nature, as we tried to exemplify. SR has
the significant advantage of generating a variety of expressions
from the given function set. For example, other methods may
be configured to fit a polynomial to the data, but the user has
to specify the degree. In SR, the power function in addition
to the four basic arithmetic operations, allows the generation
of unlimited degree polynomials, therefore providing a wider
exploration of the solution space.

As mentioned, SR is designed to optimize both the form of
the equations and the fitting parameters simultaneously. The
fitting parameters usually are specific to each dataset, but the
form may give clues toward general principles. For example, all
archipelagos will follow an ISAR, even if each archipelago will
have its own c and z values. Although this aspect has not been
explored in this study, we suggest two ways of finding general
principles. First, as was hinted by our estimators’ example, one

may independently analyse multiple datasets from the same type
of systems. From each dataset, one or multiple equations may
arise. Many of these will be similar in form even if the fitting
parameters are different. Terms repeated in several equations
along the Pareto front or with different datasets tend to be
meaningful (Schmidt and Lipson, 2009). We may then try to fit
the most promising forms to all datasets optimizing the fitting
parameters to each dataset and look for which forms seem to
have general value over all data. Second, one may simultaneously
analyse multiple datasets from the same type of systems but with
a change to the general SR implementation. Instead of optimizing
both form and fitting parameters, the algorithm may focus on
finding the best form, with fitting parameters being optimized
during the evaluation step of the evolution for each dataset
independently. This parameter optimization could be done with
standard methods such as quasi-newton or simplex (Nocedal
and Wright, 1999). To our knowledge, this approach has yet
to be implemented, but it would allow finding general models
and possibly principles, independently of the idiosyncrasies of
each dataset.

The Need for Human Inference
Many data mining techniques are regarded, and rightly so, as
“black boxes.” SR is transparent in this regard, as variables
are related through human-interpretable formulas. This is
particularly important if the goal is to find equations with both
predictive and explanatory power, building the bridge between
finding the pattern and explaining the driving process, or if a
general principle is to be suggested.
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Our results show that an automated discovery system can
identify meaningful relationships in ecological data. Yet, as
shown by our Canary Island spider SAR model, some equations
might be very accurate but overfit the data. As with any
relationship finding, either automated or human, correlation
does not imply causation, and spurious relationships are not only
possible but probable given complex enough data.

Although the method here presented is automated, it is part
of a collaborative human–machine effort. The possibility of
exploiting artificial intelligence working together with human
expertise can be traced back to Engelbart (1962), where the
term “augmented intelligence” was coined to designate such
collaboration. It has been subsequently developed and extended
to teamwork involving one or more artificial intelligence agents
together with one or (many) more humans, in diverse domains
such as robotic teams (Yanco et al., 2004) or collective intelligence
for evolutionary multi-objective optimization (Cinalli et al.,
2015). In ecological problems, human knowledge may play a
fundamental role: (1) in the beginning of the process, when
selecting input variables, building blocks and SR parameters; and
(2) in the interpretation and validation of equations. The choice
of equations along a machine-generated Pareto front should also
take advantage of human expert knowledge to identify the most
interesting models to explain the data. The researcher might
then decide to disregard, accept, or check equation validity using
other methods.

A priori Knowledge
To some extent, it is possible to select a priori the type of
models the algorithm will search for by selecting the functions
to include in the function set. The choice of the function set
is very important. A function set lacking a relevant function
for the model may delay evolution or prevent it from finding a
proper solution altogether. A way to take advantage of human
expert knowledge is to seed the initial population of expressions
with some we know are related with the problem. For example,
when searching for the GDM we could have given the algorithm
multiple forms of the ISAR to seed the search process. This is
a directive approach and must be done in a parsimonious way,
to avoid directing evolution too strongly, possibly trapping it in
a local minimum. Such an approach should be complemented
with random expressions in the initial population to create
the necessary pool material for evolution to well explore the
solution space. Therefore, a priori knowledge in SR has a stronger
influence than in other inference methods, such as Bayesian,
where a less adequate prior may be overcome by enough data.

Fine-Tuning the Process
The number of options in SR is immense. Population size is
positively correlated with variability of models and how well the
search space is explored, but might considerably slow the search.
Mutation rates are also positively correlated with variability, but
rates that are too high might prevent the algorithm converging
on the best models. The fitness measure depends on the specific
problem and on the type of noise in the data.

The number of generations to let the search run is entirely
dependent on the problem complexity and time available. Often
the algorithm reaches some equation that makes immediate sense
to the researcher and the process can be immediately stopped
for further analysis of results. Sometimes several competing
equations seem to make sense but are not entirely convincing,
in which case some indicators can be used as a stop rule, such
as high values of stability and maturity of the evolution process
(Schmidt, 2015).

The speed with which evolution occurs is extremely
variable, depending on factors including the complexity of the
relationships, having the appropriate variables and building
blocks and the level of noise in the data. Fortunately, the process
is easily adaptable to parallel computing, as many candidate
functions can be evaluated simultaneously, allowing the use of
multiple cores and even computer clusters to speed the search
of equations.

Caveats
The SR approach is fully data-driven. This means it requires
high-quality data if meaningful relationships are to be found.
Also, it makes no a priori assumptions, so the final result
might make no (obvious) sense, leading to spurious inferences,
particularly if data are scarce or poor-quality, or if the right
building blocks are not provided. Additionally, SR suffers from
the same limitations of evolutionary algorithms in general.
In many cases the algorithm may get stuck in local minima
of the search space, requiring time (or even a restart with
different parameters) to find the global minimum. Finally,
SR suffers from the problem of bloat, which consists on
an excessive growth of the expressions. There are mitigating
approaches, like introducing a penalty for long expressions
in the fitness function, or doing a posteriori symbolic
analysis and simplification. However, bloat is still a problem
under research.

Nevertheless, the fact that SR produces human legible
expressions turns out to be useful even in the case of very
large expressions. The expert eye can usually distinguish relevant
fragments from a variety of unmeaningful segments of long
expressions. And those relevant fragments often spur new
thoughts and experiments.

The Automation of Science?
The methods here presented can be powerful additions to
theoretical and experimental ecology, even if new conceptual
hypotheses have to be created to accommodate the new
equations. Such models could even be the only available means
of investigating complex ecological systems when experiments
are not feasible or datasets get too big/complex to model,
using traditional statistical techniques (e.g., Tromas et al.,
2017).

This family of techniques has led several authors to
suggest the “automation of science” (King et al., 2009),
where computers are able to advance hypotheses, test them,
and reach conclusions in largely unassisted processes. This
falls into the realm of exploiting knowledge (or symbolic)
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driven AI together with data driven AI, or also automated
machine learning an approach that recently began to gain
momentum (e.g., Zhuang et al., 2017). SR potential is high
in this automated science avenue since it bridges well from
data to symbolic representations. What is clear already is
its capability of producing formulas that help researchers to
focus on initially imperceptible but interesting relationships
within datasets and therefore SR may guide the process of
hypothesis creation.
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