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des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les

Materiaux IPREM, MIRA, UMR, BP, Pau Cedex, France, 7 Madeira Natural Park, Funchal, Madeira, Portugal

‡ PAVB and ARMS are joint senior authors on this work.

* mboieiro@fc.ul.pt

Abstract

During the last few centuries oceanic island biodiversity has been drastically modified by

human-mediated activities. These changes have led to the increased homogenization of

island biota and to a high number of extinctions lending support to the recognition of oceanic

islands as major threatspots worldwide. Here, we investigate the impact of habitat changes

on the spider and ground beetle assemblages of the native forests of Madeira (Madeira archi-

pelago) and Terceira (Azores archipelago) and evaluate its effects on the relative contribution

of rare endemics and introduced species to island biodiversity patterns. We found that the

native laurel forest of Madeira supported higher species richness of spiders and ground bee-

tles compared with Terceira, including a much larger proportion of indigenous species, partic-

ularly endemics. In Terceira, introduced species are well-represented in both terrestrial

arthropod taxa and seem to thrive in native forests as shown by the analysis of species abun-

dance distributions (SAD) and occupancy frequency distributions (OFD). Low abundance

range-restricted species in Terceira are mostly introduced species dispersing from neigh-

bouring man-made habitats while in Madeira a large number of true rare endemic species

can still be found in the native laurel forest. Further, our comparative analysis shows striking

differences in species richness and composition that are due to the geographical and geologi-

cal particularities of the two islands, but also seem to reflect the differences in the severity of

human-mediated impacts between them. The high proportion of introduced species, the vir-

tual absence of rare native species and the finding that the SADs and OFDs of introduced

species match the pattern of native species in Terceira suggest the role of man as an
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important driver of species diversity in oceanic islands and add evidence for an extensive and

severe human-induced species loss in the native forests of Terceira.

Introduction

Relative to their area, islands make a disproportionately large contribution to global biodiver-

sity but have long been severely impacted by human intervention leading several authors to

consider that the present biodiversity crisis is particularly acute in island ecosystems [1–4].

Over the last few centuries most extinctions have taken place on oceanic islands, mainly as a

consequence of direct and indirect human actions, particularly overhunting, habitat destruc-

tion, habitat fragmentation and species introductions [3–6]. Further, simply by considering

the severe habitat devastation reported for many islands and the acknowledged vulnerability of

island endemic invertebrates, we have become aware that major extinctions on oceanic island

ecosystems often remain unnoticed [7, 8]. The restricted range size and small populations of

many island endemic invertebrate species clearly highlight how these species may be particu-

larly susceptible to extinction [7, 9, 10].

In recent years there has been a growing interest in the assessment of invertebrate extinc-

tion. For example, relevant information of high extinction levels on island ecosystems has

been put forward for molluscs, a group of invertebrates where the presence of a shell is crucial

to evaluate changes in community composition across time [3, 4, 8, 11, 12]. In contrast, the

number of documented extinctions of terrestrial arthropods is small, even though this species-

rich group of invertebrates has undoubtedly been the most severely affected by human driven

extinctions over the last few centuries [7, 13–15]. The assessment of species vulnerability to

extinction has relied mostly on the study of extinction risk indicators (e.g. life-history traits,

rarity, population decline and fragmentation) due to the lack of detailed population viability

analysis data [16]. In terrestrial arthropods, the characterization of rarity and conservation sta-

tus of species is hampered by the poor information on species distributions and abundances

over time, and sensitivity to ecosystem disturbance [17]. Consequently, the assessment of ter-

restrial arthropod rarity has mostly depended on the analysis of recent data on species abun-

dances and distributions [18, 19].

The joint analysis of species abundance distributions (SADs) and of occupancy frequency

distributions (OFDs) is a very useful tool for identifying patterns of commonness and rarity of

species in communities, allowing inferences on the processes underlying community assembly,

and providing valuable information for scientists and conservation managers [20, 21]. How-

ever, no direct association should be established a priori between the observed low-abundance

range-restricted species and their vulnerability to extinction because this group of species may

include tourists and poorly-sampled species along with the truly rare ones [18, 22, 23]. Many

pseudo-rare species are classified as rare as a consequence of spatial, phenological and method-

ological edge effects [23, 24], and may account for a substantial fraction of the range-restricted

species group. Unless properly identified, pseudo-rare species may blur the interpretation of

commonness-rarity patterns in ecological communities [18].

In this study, we compare the assemblages of epigean spiders and ground beetles from the

native forests of two oceanic islands–Terceira (Azores archipelago) and Madeira (Madeira

archipelago)—using standardized data from a broad sampling program. We specifically

selected these islands since both host important areas of a relic forest—the Laurisilva—that is

restricted to just three Macaronesian archipelagos, but also due to the contrasting conservation

status of their native forests. In Terceira, the native forest was severely destroyed and frag-

mented by anthropogenic activities since human colonization during the 15th century, and
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presently occupies a small fraction of the island area [25, 26]. In contrast, the extent of forest

destruction in Madeira has been less severe and some large pristine forest patches are still pres-

ent [27, 28]. Thus, the comparative analysis of the spider and ground beetle assemblages of the

native forests from both islands may provide insights about the consequences of habitat des-

truction on the composition and structure of invertebrate communities. In addition to both

study islands hosting several of the remaining areas of Laurisilva, they share other characteris-

tics in common, such as having climatic and edaphic affinities, whilst differing in others, such

as geographic, geological and historical features [26, 28, 29](Table 1; see also the study area sec-

tion). Madeira is older, larger, higher and closer to mainland (and to paleoislands), thus host-

ing higher species and habitat diversity [26, 28, 30, 31]. Nevertheless, Madeira has a much

larger human population than Terceira, receives nearly a million visitors each year (over ten

times that of Terceira) and has for long been a strategic stopover on the transatlantic trade

routes. Despite the enduring and severe threats to Madeira biodiversity, the Laurisilva survived

mainly due to the complex orography of the island.

This study aimed to (i) examine and compare SADs and OFDs of epigean spiders and

ground beetles in Terceira and Madeira islands, (ii) evaluate the contribution of introduced

and rare species to SAD and OFD profiles, and (iii) assess how species compositional differ-

ences of spider and ground beetle assemblages relate with the legacy of human disturbance on

the native forests of both study islands. Taking into consideration the higher disturbance in

Terceira native forests, we expect to find a higher number of introduced species and a lower

proportion of endemics in this island than in Madeira. Further, based on previous works that

found an association between departures from log-normality and the effects of disturbance on

community structure (see a recent review by [21] and the references therein), we hypothesize

that the logseries may best fit the SADs from the more disturbed forests of Terceira, while the

SADs from Madeira Laurisilva will be better modelled by the lognormal distribution. Finally,

we predict that introduced species will be restricted to low-abundance and low-occupancy

classes in Madeira Laurisilva, but in Terceira they will present a wider class distribution in

both SADs and OFDs.

Table 1. Main characteristics of Terceira and Madeira islands and of their native forests. Geographic, geological and ecological characteristics of the two study islands

with information on their native forests. Data on tree species composition and on the actual and potential distribution of native forest in Madeira and Terceira were

obtained from several references ([26, 27, 28, 32, 33] and references therein).

Terceira Madeira

Area (km2) 402 741

Altitude (m) 1023 1862

Age (MY) 3.5 5

Ontogenetic stage Immature–lower geomorphological

complexity

Mature–higher geomorphological complexity

Distance to nearest island/mainland (km) 37/1520 20/660

Native forest area remaining/potential (km2) 23/402 150/600

Temperature in native forest areas (˚C) (minimum—

maximum)

13.1–15.2 10.7–16.2

Humidity in native forest areas (%) (minimum—maximum) 94.7–98.9 87.7–97.4

Precipitation in native forest areas (mm) (average) 2497 1753

Common tree species genera in native forest Erica, Ilex, Juniperus, Laurus, Vaccinium Clethra, Ilex, Laurus, Morella, Ocotea, Persea,

Vaccinium
Human colonization 15th century 15th century

Human population 56,062 256,014

https://doi.org/10.1371/journal.pone.0195492.t001
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Materials and methods

Study area

The study was undertaken in the native forests of Madeira and Terceira islands. These two oceanic

islands belong to different volcanic archipelagos (Madeira and Azores) that lie in the North Atlan-

tic: Madeira is located between latitudes 32˚-33˚ N and longitudes 16˚-17˚ W, while the Azores

range between 37˚-40˚ N and 25˚-31˚ W. The Madeiran archipelago comprises three island gro-

ups—Madeira, Porto Santo and the surrounding islets and Desertas—but only the main island

has native laurel forest (Laurisilva). The Azores is a relatively recent archipelago, comprising nine

islands and several additional islets. Presently, only seven out of the nine Azorean islands still have

native forest fragments [25, 34, 35]. These native forest fragments can be dominated by Erica azor-
ica or Juniperus brevifolia, or present a larger number of co-dominant tree species including the

Azorean laurel (Laurus azorica). For simplicity, we will refer to them here as Laurisilva fragments.

The Laurisilva is considered a relict subtropical forest where sclerophyllous laurel tree species

from the genera Laurus, Ocotea and Persea are dominant, together with a few other tree species

(e.g. Clethra arborea, Ilex spp., Morella faya and Vaccinium spp.). This kind of forest occupied a

vast area in southwestern Europe and northwestern Africa during the Tertiary, but became extinct

in most of its range following the progressive climatic change that culminated with the Pleistocene

glaciations, being now restricted to the Macaronesian archipelagos. In both the Azorean and

Madeiran islands, the Laurisilva covered most of the land surface before human settlement [27].

However, the Azorean Laurisilva suffered a drastic reduction of over 97% and became extinct in

two islands (Corvo and Graciosa) during the mid 20th century [25, 35]. The percentage of native

forest cover in the remaining seven Azorean islands is low, ranging between 0.1–10.9%, and in

most cases the remaining native forest is also highly fragmented and disturbed [26, 35]. In Ter-

ceira, only five native forest fragments survived the severe and generalised human impact, occupy-

ing less than 6% of the island surface (i.e. 23 km2) [26, 35]. Even so, a few of these forest fragments

still harbour a substantial number of endemic species and were considered priority areas for bio-

diversity conservation in the Azores [19, 34, 36]. These forest fragments are now included in a

recently created protected area–the Terceira Island Natural Park.

In Madeira, an extensive area of Laurisilva was also destroyed for timber, fuel and field clear-

ing for agricultural use during the last few centuries, but the complex topography of the island

allowed its survival and it now occupies nearly 20% of the island surface (i.e. 150 km2). During

the second half of the 20th century, the implementation of a multidisciplinary program to pro-

tect and recover natural plant cover coupled with the creation of a protected area—the Madeira

Natural Park—were two major landmarks in allowing the conservation of Madeira Laurisilva.

More recently, due to its outstanding natural value and the pristine condition of many forest

areas, Madeira Laurisilva was included in the World Heritage List and the same reasoning has

led to the inclusion of the Madeira archipelago within a global biodiversity hotspot [37].

The native forests of Terceira and Madeira share some characteristics since some of the dom-

inant trees are congeners that have speciated in each archipelago and they also show floristic

affinities and similarities in climatic and edaphic conditions [38, 39]. Still, there are some abiotic

and biotic differences between the two forests (for example in species richness, composition,

forest stature, soil humidity) that result from their different altitudinal ranges, historical factors,

and the geographic location and geological age of each study island (Table 1; [26, 28, 29]).

Study species and fieldwork sampling

Two groups of epigean terrestrial arthropods—spiders (Araneae) and ground beetles (Coleop-

tera, Carabidae)—were selected as targets of this study since they are ecologically important in
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most terrestrial ecosystems and their diversity, taxonomy and ecology is well known in the

Azores and Madeira following comprehensive studies carried out in both archipelagos during

the last two decades [30, 31, 40]. Spiders and ground beetles are two species-rich groups of ter-

restrial arthropod predators that are locally abundant and diverse, and show a variety of forag-

ing strategies and habitat preferences. Both animal groups are sensitive to changes in habitat

composition and structure, can be easily sampled and species level identification is usually not

problematic. These reasons have led many researchers to use one or both of these arthropod

groups as bioindicators in biodiversity and ecological studies (e.g. [41] and references therein).

We sampled the target groups by applying a standardized sampling protocol (the BALA

protocol) which consists of setting 30 pitfall traps (plastic cups with 42mm wide and 78mm

deep) spaced by 5m along a linear transect. The traps were filled in alternately with ~60ml of

ethyleneglycol or Turquin solution [42] and a few drops of detergent to reduce the surface ten-

sion. A plastic plate was placed nearly 5cm above each trap to protect its contents from the

rain and the traps remained active for a 15-day period. The BALA protocol proved to be both

efficient and effective in sampling epigean terrestrial arthropods in Azorean island ecosystems,

where it has been repeatedly used in inventory and monitoring programs [34, 35, 43]. The

sampling took place during late spring and summer, the period when most spider and ground

beetle species are active (S1 and S2 Tables). The standardized data on spider and ground beetle

species richness and abundance used in this study were collected during several field surveys

carried out in Terceira and Madeira. Forty sites were sampled in Terceira distributed across

the five extant forest fragments (Biscoito da Ferraria, Caldeira Guilherme Moniz, Pico do Gal-

hardo, Serra de Santa Bárbara and Terra Brava) while in Madeira sampling was carried out in

47 sites encompassing large and continuous forest patches, but also in smaller fragments (e.g.

Funduras, Ribeira do Tristão and Ribeira da Cruz). We adopted a spatially extensive sampling

design aiming to cover the diversity of habitats within Laurisilva and to obtain a representative

sample of the spider and ground beetle diversity from each island. Furthermore, particularly in

Madeira, we have also sampled more locally along altitudinal gradients. The complex geomor-

phology of Madeira (with steep slopes and deep valleys) posed some difficulties during sam-

pling site selection since many areas are virtually inaccessible while in other locations we were

not able to apply the BALA protocol (i.e. sampling along a 150m transect).

Pitfall samples were taken to the lab where the specimens were sorted and identified to spe-

cies level. Taxonomic literature was used to identify the adult spiders [44–47] and ground bee-

tles [48–50], and we also consulted the entomological collections of two public institutions

(see below). The immature stages of both spiders and beetles are generally difficult to identify

and were not considered in this study. All the specimens were deposited in the entomological

collection of the Animal Biology Department (Faculty of Sciences, University of Lisbon, Portu-

gal) and at the Dalberto Pombo entomological collection (University of Azores, Terceira,

Portugal).

Statistical analysis

Classical alpha diversity metrics following the Hill numbers were calculated for the four com-

munities aiming to obtain a diversity profile organized in four orders (q) as follows: i) species

richness (S) (q = 0), ii) the exponential Shannon-Wiener index (exp H´) (q = 1); iii) the inverse

of Simpson´s concentration index (1/D) (q = 2) and iv) the Berger-Parker index (d)(q = 3). The

Hill numbers are very informative since they combine knowledge on species richness, species

rarity and species dominance and they are all expressed in the same units (i.e. effective number

of species) making them comparable between each other [51–53]. In addition, to understand

the level of completeness of our sampling, we calculated the Jackknife 1 non-parametric species
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richness estimator for the four communities since it is considered very robust to different sam-

pling scales and conditions [54]. Then, sampling completeness was obtained using the ratio of

observed species richness (S) over the Jackknife 1 estimation.

To further our understanding of the diversity patterns of spiders and ground beetles in Ter-

ceira and Madeira, we performed SAD and OFD analyses. The joint analysis of the variations

in species abundances and species geographic range sizes provides a useful approach to iden-

tify patterns of commonness and rarity and is particularly helpful in comparative studies of

(deconstructed) ecological assemblages. The performance of SAD and/or OFD analyses fol-

lowing the deconstruction of ecological assemblages into various subsets (e.g. native and intro-

duced species) allows assessing the contribution of each subset to the overall pattern which,

under a comparative framework, may provide valuable information for biodiversity manage-

ment and conservation [21]. To evaluate variations in the shape of SADs of the Terceira and

Madeira communities, we fitted two SAD models to the data: the logseries distribution, and

the Poisson lognormal distribution (PLN; truncated form). These two models represent the

most commonly observed empirical SAD shapes, and both have been found to provide good

fits to empirical data [55]. The lognormal distribution is generally considered to accurately

model the SAD of an undisturbed community, providing a helpful tool for measuring the

impacts of disturbance on communities, while in many disturbed communities SADs have

been shown to follow distributions close to the logseries [21]. However, a variety of patterns

(including the opposite) have been recorded in empirical systems (see [21] and references

therein). The PLN model was fitted using the ‘poilog’ R package [56] and, for each sample, the

SAD models were compared using Akaike’s information criterion corrected for small sample

size (AICc) [57, 58]. The model with the smallest AICc value was considered as providing the

best fit to the data. However, models with a delta AICc value lower than two (the difference

between each model’s AICc and the lowest AICc) were considered as having equal statistical

support. In addition to comparing the fit of the PLN and the logseries for each dataset, we also

applied the gambin model proposed by Ugland et al. [59], which has been shown to provide

good fits to SADs [60]. To fit the gambin model we first binned the data into octaves (on a log

2 scale) and then we estimated for each dataset the standardized alpha parameter (α) of the

gambin model which determines the shape of the distribution and the ‘dimensionality’ of the

sampled community. Calculating α provided us with an additional metric with which to com-

pare the shape of SADs between assemblages. These analyses were carried using the ‘gambin’

R package [60]. Initial examination of SAD plots revealed possible multimodality in the form

of several SADs leading us to attempt to fit a two-mode PLN model [61]. However, as we were

focused on subsets of taxa (e.g. ground beetles) there were issues related with the low number

of collected specimens (particularly in Terceira) and the model did not converge in a number

of instances. Thus, we do not present the results here.

The study of OFDs was carried out separately for epigean spiders and ground beetles from

the islands of Madeira and Terceira. For each island, the number of sampling locations was

subdivided into proportional classes (10 classes), each comprising 10% of the total number of

sampling locations. Then, the cumulative number of species sharing the same frequency occu-

pancy size class was plotted using frequency histograms. The analyses of modality in OFDs

were done by applying the Tokeshi formulas following a two-step process [62]. First, under the

null hypothesis of a uniform distribution, we tested the significance (P< 0.05) of the deviance

from randomness of the overall shape of each frequency occupancy distribution (Pc) aiming to

identify the presence of modality in the data. Then, if the data presented a mode, we checked

the significance (P< 0.05) of the peaks of the left-most (Pl) and right-most (Pr) classes. If the

modes of both outermost classes (Pl, Pr) were significant the distribution was classified as

bimodal, while in the case of only one mode being significant the OFD was considered to be

Arthropod diversity and rarity in native forests of two oceanic islands
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unimodal. All modality tests were conducted using the original formulas [62] in a Microsoft

Excel spreadsheet.

Potential rare species were identified following the quartile definition proposed by Gaston

[18], which restricts the analysis of rarity to the species included in the first quartile of SADs

and OFDs. This selection allowed us to produce a comprehensive list of potential rare species

for both study islands. Then, taking into consideration the biology of each species and informa-

tion from previous research on species-habitat associations in both archipelagos, a more de-

tailed evaluation of rarity was carried out to distinguish between pseudo-rare (tourists and

pseudo-rare microhabitat specialists) and truly rare species of the native laurel forests. We clas-

sified as tourist species those species that are rare in the Laurisilva, but are frequent and abun-

dant in the surrounding habitats. Pseudo-rare microhabitat specialists are species characteristic

of the Laurisilva, but occur in specific microhabitats (e.g. under the bark of trees, in tree holes,

on the vegetation).

Results

Sampling of epigean spiders and ground beetles in native forests yielded 1799 specimens from

Terceira and 4971 from Madeira (Table 2). In Madeira, ground beetles were the dominant

group (78.8% of specimens), whilst spiders were better represented in the samples from

Table 2. Diversity metrics following the Hill numbers (q) and relative abundance of ground beetles and spiders

from the native forests of Terceira and Madeira.

Terceira Madeira

Ground beetles

Overall species richness (q = 0) 7 34

Estimated species richness (Jackknife 1) 10.9±2.3 44.8±3.5

Sample completeness 0.64 0.77

Exponential of Shannon-Wiener index (q = 1) 2.94 7.61

Simpson’s index (q = 2) 2.77 4.55

Berger-Parker index (q = 3) 0.47 0.32

Average species richness per site (and range) 0.7 (0–4) 5.1 (2–11)

Total number of individuals 933 3915

Average species abundance per site (and range) 23.3 (0–649) 83.3 (5–1051)

Proportion of introduced species 0.57 0.09

Proportion of endemic species 0.29 0.88

Spiders

Overall species richness (q = 0) 21 40

Estimated species richness (Jackknife 1) 23.9±1.6 51.7±4.3

Sample completeness 0.88 0.77

Exponential of Shannon-Wiener index (q = 1) 8.17 11.13

Simpson’s index (q = 2) 2.78 4.54

Berger-Parker index (q = 3) 0.30 0.40

Average species richness per site (and range) 4.8 (2–9) 6.8 (0–15)

Total number of individuals 866 1056

Average species abundance per site (and range) 21.6 (4–148) 22.5 (0–79)

Proportion of introduced species 0.43 0.18

Proportion of endemic species 0.43 0.55

Data on species richness and abundance (overall and average per site) are presented jointly with the proportion of

endemics and introduced species in each island for both study groups.

https://doi.org/10.1371/journal.pone.0195492.t002
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Terceira (48.1% of specimens). Species richness was considerably different between the two

islands for both spiders (S = 21 in Terceira, S = 40 in Madeira) and ground beetles (S = 7 in

Terceira, S = 34 in Madeira) and sampling completeness was similar for Madeira samples, but

higher for spiders than ground beetles in the Azores (Tables 2 and 3). Introduced species of

the two target groups were found in the native forests of both islands, but while they accounted

for a large fraction of the fauna in Terceira (nearly half of the spider and ground beetle spe-

cies), a much lower proportion of introduced species was reported in Madeira (15% of spiders

and less than 9% of ground beetles). In fact, the Laurisilva of Madeira clearly contrasts with the

native forests of Terceira by harbouring a larger proportion of indigenous species, particularly

endemic ground beetles (Tables 2 and 3). Besides the differences in species richness and com-

position, the assemblages of spiders and ground beetles from the native forests of Terceira and

Madeira are also structured differently. Epigean spiders showed similar abundance in native

forests from Madeira (average abundance/site: 22.5 specimens) and Terceira (average abun-

dance/site: 21.6 specimens), but considerable differences were recorded for ground beetles

(Table 2). Terceira is extremely poor in regards to this insect group (average abundance/site:

23.3 specimens) when compared with Madeira (average abundance/site: 83.3 specimens). Hill

numbers clearly showed a higher diversity of ground beetles and spiders in Madeira than in

Terceira, and, surprisingly, a high dominance in Madeira spiders as reported by the Berger-

Parker index (Table 2).

The comparative analyses of SADs highlight considerable differences between the assem-

blages of ground beetles from the two islands. The remnants of native forest in Terceira sup-

ported a depauperate ground beetle fauna, where on average less than one species was found

per site (0.7 species/site). One introduced species (Paranchus albipes) was co-dominant with

two less abundant endemic species (Cedrorum azoricus and Trechus terrabravensis) and the

remaining species, mainly introduced species, were found in scarce numbers (Fig 1A and

Table 3). The ground beetle assemblages from Madeira Laurisilva were more species-rich,

being dominated by endemic species (particularly Orthomus curtus and O. dilaticollis), and

introduced species were seldom found. The lack of ground beetle representatives in the inter-

mediate abundance classes of Terceira contrasts markedly with the SAD pattern found in

Madeira (Fig 1B). The SADs of spiders from Terceira and Madeira showed a similar pattern,

where all abundance classes had representatives, less abundant species were the dominant

group and only a small number of abundant species was recorded (Fig 1C). Curiously, the spi-

der assemblages from Terceira included a higher proportion of introduced species (43%), but

in Madeira the lower percentage of introduced species (18%) accounted for over 54% of overall

species abundance, with the introduced species Tenuiphantes tenuis and Cryptachaea blattea
being the most abundant spiders. Nevertheless, most of the introduced spiders in Madeira

have low abundance while in the Azores they are included in a range of abundance classes.

For both spiders and ground beetles, in both study islands, the best fitting SAD model was

the logseries (Table 4); however, closer examination of SAD plots (Fig 1) revealed differences

between the observed SADs that were not apparent when just comparing the fit of the logseries

and the PLN models. For example, for ground beetles in Terceira, the SAD exhibited a bimodal

shape contrasting markedly with the SAD pattern found for Madeiran beetles, whilst for spi-

ders the Terceira SAD had a much lower proportion of singleton species when compared with

the findings for Madeira. In regards to the gambin model, the standardised α values for ground

beetles were 0.64 for Terceira and 2.18 for Madeira, whilst the α values for spiders were 3.98

for Terceira and 1.83 for Madeira (see also Fig 1).

The OFDs of epigean spiders and ground beetle assemblages from Madeira Laurisilva were

strongly right-skewed (Fig 2, Table 5), indicating that most species are confined to a few loca-

tions. Only a few species were found in a high number of sampling locations (i.e. >60% of the
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Table 3. Spider and ground beetle species richness, abundance and occupancy in Madeira and Terceira islands. List of the sampled spider and ground beetle species

in Madeira and Terceira native forests with functional and taxonomic (family-level) information and indication of their overall abundance, occupancy and distributional

status (END—endemic; NAT—native non-endemic; INT—introduced).

ISLAND TAXONOMIC GROUP SPECIES DISTRIBUTION

STATUS

OCCUPANCY ABUNDANCE FUNCTIONAL

GROUP

Order Family

Madeira Araneae Linyphiidae Centromerus variegatus Denis END 1 3 sheet-web builder

Madeira Araneae Linyphiidae Ceratinopsis acripes (Denis) END 1 1 sheet-web builder

Madeira Araneae Linyphiidae Ceratinopsis infuscata (Denis) END 14 22 sheet-web builder

Madeira Araneae Miturgidae Cheiracanthium albidulum
(Blackwall)

END 8 13 hunter

Madeira Araneae Clubionidae Clubiona decora Blackwall NAT 9 12 hunter

Madeira Araneae Theridiidae Cryptachaea blattea (Urquhart) INT 32 133 cobweb builder

Madeira Araneae Linyphiidae Diplostyla concolor (Wider) INT 3 5 sheet-web builder

Madeira Araneae Theridiidae Dipoenata longitarsis (Denis) END 1 1 cobweb builder

Madeira Araneae Dysderidae Dysdera diversa Blackwall END 1 1 hunter

Madeira Araneae Theridiidae Enoplognatha sattleri Bösenberg NAT 3 4 cobweb builder

Madeira Araneae Linyphiidae Entelecara schmitzii Kulczynski NAT 15 35 sheet-web builder

Madeira Araneae Theridiidae Episinus maderianus Kulczynski NAT 20 31 cobweb builder

Madeira Araneae Mimetidae Ero aphana (Walckenaer) INT 1 1 hunter

Madeira Araneae Linyphiidae Frontinellina dearmata (Kulczynski) END 2 3 sheet-web builder

Madeira Araneae Linyphiidae Frontiphantes fulgurenotatus
(Schenkel)

END 6 7 sheet-web builder

Madeira Araneae Hahniidae Hahnia insulana Schenkel END 13 19 sheet-web builder

Madeira Araneae Dictynidae Lathys affinis (Blackwall) END 14 40 mesh-web builder

Madeira Araneae Linyphiidae Lepthyphantes impudicus
Kulczynski

END 2 3 sheet-web builder

Madeira Araneae Linyphiidae Lepthyphantes lundbladi Schenkel END 2 13 sheet-web builder

Madeira Araneae Linyphiidae Lepthyphantes mauli Wunderlich END 1 1 sheet-web builder

Madeira Araneae Salticidae Macaroeris diligens (Blackwall) NAT 11 22 hunter

Madeira Araneae Salticidae Macaroeris n. sp. END 2 2 hunter

Madeira Araneae Gnaphosidae Macarophaeus cultior (Kulczynski) END 9 28 hunter

Madeira Araneae Tetragnathidae Meta stridulans Wunderlich END 3 4 orb-web builder

Madeira Araneae Linyphiidae Microlinyphia johnsoni (Blackwall) NAT 1 1 sheet-web builder

Madeira Araneae Thomisidae Misumena spinifera (Blackwall) NAT 1 1 hunter

Madeira Araneae Theridiidae Paidiscura orotavensis (Schmidt) NAT 2 3 cobweb builder

Madeira Araneae Linyphiidae Palliduphantes schmitzi (Kulczynski) NAT 30 83 sheet-web builder

Madeira Araneae Philodromidae Philodromus insulanus Kulczynski END 1 2 hunter

Madeira Araneae Linyphiidae Poeciloneta variegata (Blackwall) INT 2 3 sheet-web builder

Madeira Araneae Theridiidae Rugathodes madeirensis Wunderlich END 21 33 cobweb builder

Madeira Araneae Theridiidae Steatoda nobilis (Thorell) NAT 1 1 cobweb builder

Madeira Araneae Linyphiidae Tenuiphan tes tenebricoloides
(Schenkel)

END 3 31 sheet-web builder

Madeira Araneae Linyphiidae Tenuiphan tes tenuis (Blackwall) INT 40 420 sheet-web builder

Madeira Araneae Tetragnathidae Tetragnatha intermedia Kulczynski INT 1 1 orb-web builder

Madeira Araneae Theridiidae Theridion melanurum Hahn INT 7 12 cobweb builder

Madeira Araneae Theridiidae Theridion n. sp. END 10 12 cobweb builder

Madeira Araneae Mysmenidae Trogloneta madeirensis Wunderlich END 15 36 3D orb-web builder

Madeira Araneae Linyphiidae Turinyphia maderiana (Schenkel) END 8 12 sheet-web builder

Madeira Araneae Araneidae Zygiella minima Schmidt NAT 1 1 orb-web builder

Madeira Coleoptera Carabidae Amara aenea (De Geer) INT 1 1 winged polyphagous

(Continued)
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Table 3. (Continued)

ISLAND TAXONOMIC GROUP SPECIES DISTRIBUTION

STATUS

OCCUPANCY ABUNDANCE FUNCTIONAL

GROUP

Madeira Coleoptera Carabidae Bradycellus assingi Wrase & Jaeger END 5 19 apterous generalist

predator

Madeira Coleoptera Carabidae Bradycellus excultus Wollaston END 11 26 apterous generalist

predator

Madeira Coleoptera Carabidae Bradycellus maderensis Mateu END 1 3 apterous generalist

predator

Madeira Coleoptera Carabidae Bradycellus wollastoni Wrase &

Jaeger

END 4 11 apterous generalist

predator

Madeira Coleoptera Carabidae Calathus colasianus Mateu END 18 154 apterous generalist

predator

Madeira Coleoptera Carabidae Calathus complanatus Dejean END 4 242 apterous generalist

predator

Madeira Coleoptera Carabidae Calathus vividus (Fabricius) END 7 144 apterous generalist

predator

Madeira Coleoptera Carabidae Cymindis maderae Wollaston END 1 2 apterous generalist

predator

Madeira Coleoptera Carabidae Harpalus attenuatus Stephens NAT 1 1 winged polyphagous

Madeira Coleoptera Carabidae Loricera wollastoni Javet END 10 13 apterous specialist

predator

Madeira Coleoptera Carabidae Nesarpalus gregarius (Fauvel) END 1 1 apterous generalist

predator

Madeira Coleoptera Carabidae Olisthopus ericae Wollaston END 4 7 apterous generalist

predator

Madeira Coleoptera Carabidae Olisthopus maderensis Wollaston END 1 1 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus annae (Donabauer) END 9 99 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus berrai (Battoni) END 6 42 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus curtus (Wollaston) END 31 1245 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus dilaticollis (Wollaston) END 12 1244 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus gracilipes (Wollaston) END 23 137 apterous generalist

predator

Madeira Coleoptera Carabidae Orthomus lundbladi (Jeannel) END 1 12 apterous generalist

predator

Madeira Coleoptera Carabidae Paradromius insularis (Wollaston) END 1 1 apterous generalist

predator

Madeira Coleoptera Carabidae Scarites abbreviatus Dejean END 37 205 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus custos Wollaston END 2 5 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus decolor Jeannel END 6 63 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus dilutus Wollaston END 3 13 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus flavomarginatus Wollaston END 2 17 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus fulvus Dejean INT 1 1 apterous generalist

predator

(Continued)
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Table 3. (Continued)

ISLAND TAXONOMIC GROUP SPECIES DISTRIBUTION

STATUS

OCCUPANCY ABUNDANCE FUNCTIONAL

GROUP

Madeira Coleoptera Carabidae Trechus maderensis Csiki END 1 2 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus minyops Wollaston END 5 6 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus nigrocruciatus Wollaston END 1 1 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus nugax Lompe END 5 23 apterous generalist

predator

Madeira Coleoptera Carabidae Trechus obtusus Erichson INT 5 18 winged generalist

predator

Madeira Coleoptera Carabidae Trechus umbricola Wollaston END 18 152 apterous generalist

predator

Madeira Coleoptera Carabidae Zargus schaumii Wollaston END 3 4 apterous generalist

predator

Terceira Araneae Linyphiidae Acorigone acoreensis (Wunderlich) END 4 10 sheet-web builder

Terceira Araneae Linyphiidae Agyneta decora (O.P. Cambridge) INT 7 13 sheet-web builder

Terceira Araneae Linyphiidae Canariphantes acoreensis
(Wunderlich)

END 17 36 sheet-web builder

Terceira Araneae Dysderidae Dysdera crocata C.L. Koch INT 10 21 Hunter

Terceira Araneae Linyphiidae Erigone atra Blackwall INT 3 3 sheet-web builder

Terceira Araneae Linyphiidae Erigone autumnalis Emerton INT 1 2 sheet-web builder

Terceira Araneae Mimetidae Ero furcata (Villers) INT 7 11 Hunter

Terceira Araneae Linyphiidae Mermessus bryantae (Ivie & Barrows) INT 2 2 sheet-web builder

Terceira Araneae Linyphiidae Minicia floresensis Wunderlich END 2 5 sheet-web builder

Terceira Araneae Linyphiidae Oedothorax fuscus (Blackwall) INT 2 2 sheet-web builder

Terceira Araneae Linyphiidae Palliduphantes schmitzi (Kulczynski) NAT 12 40 sheet-web builder

Terceira Araneae Lycosidae Pardosa acorensis Simon END 22 256 Hunter

Terceira Araneae Pisauridae Pisaura acoreensis Wunderlich END 5 6 Hunter

Terceira Araneae Linyphiidae Porrhomma borgesi Wunderlich END 10 15 sheet-web builder

Terceira Araneae Theridiidae Rugathodes acoreensis Wunderlich END 21 107 tangle- or cobweb

builder

Terceira Araneae Tetragnathidae Sancus acoreensis (Wunderlich) END 1 1 orb-web builder

Terceira Araneae Linyphiidae Tenuiphan tes miguelensis
Wunderlich

NAT 38 202 sheet-web builder

Terceira Araneae Linyphiidae Tenuiphan tes tenuis (Blackwall) INT 17 102 sheet-web builder

Terceira Araneae Linyphiidae Walckenaeria grandis (Wunderlich) END 5 11 sheet-web builder

Terceira Araneae Thomisidae Xysticus cor Canestrini NAT 5 18 Hunter

Terceira Araneae Thomisidae Xysticus nubilus Simon INT 1 3 Hunter

Terceira Coleoptera Carabidae Amara aenea (De Geer) INT 1 1 winged polyphagous

Terceira Coleoptera Carabidae Anisodactylus binotatus (Fabricius) INT 1 1 winged polyphagous

Terceira Coleoptera Carabidae Cedrorum azoricus azoricus Borges &

Serrano

END 9 186 apterous generalist

predator

Terceira Coleoptera Carabidae Ocys harpaloides (Audinet-Serville) NAT 1 1 winged generalist

predator

Terceira Coleoptera Carabidae Paranchus albipes (Fabricius) INT 8 436 winged generalist

predator

Terceira Coleoptera Carabidae Pterostichus vernalis (Panzer) INT 1 2 winged generalist

predator

(Continued)
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Table 3. (Continued)

ISLAND TAXONOMIC GROUP SPECIES DISTRIBUTION

STATUS

OCCUPANCY ABUNDANCE FUNCTIONAL

GROUP

Terceira Coleoptera Carabidae Trechus terrabravensis Borges,

Serrano & Amorim

END 8 306 apterous generalist

predator

The distributional status follows [30] for Madeiran species and [31] for the Azorean ones. Rare species are highlighted in bold.

https://doi.org/10.1371/journal.pone.0195492.t003

Fig 1. Species abundance distributions (SADs) for spiders and ground beetles from the native forests of Terceira and Madeira islands. The best fit

models (logseries in red triangles and PLN in blue squares) are plotted together with the empirical data. The number of native species is presented in

green while the number of introduced species is shown in white. (A) SAD of Terceira ground beetles. (B) SAD of Madeira ground beetles. (C) SAD of

Terceira spiders. (D) SAD of Madeira spiders.

https://doi.org/10.1371/journal.pone.0195492.g001
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sites): the abovementioned introduced spiders–T. tenuis and C. blattea–, the native spider Pal-
liduphantes schmitzi and the endemic ground beetles Orthomus curtus and Scarites abbreviatus.
In Terceira, most species of the two target groups were characterised by low occupancy, but

the OFDs were less strongly right-skewed relative to those based on the Madeira data (Fig 2,

Table 5). The unusual OFD for ground beetles, where only a few species can be found in a low

number of sites, clearly highlights the species poor fauna of Terceira. Interestingly, the OFDs

of introduced species in Terceira match the pattern observed for native species while in

Madeira they are locally restricted (with the two exceptions previously reported in spiders).

Finally, the analysis of species rarity in groups of low-abundance range-restricted (i.e. poten-

tial rare) spiders and ground beetles from the native forests of Madeira and Terceira enabled the

discrimination between pseudo-rare and true rare species. In Terceira all potential rare species

were found to be pseudo-rare and include species that are common in neighbouring habitats

(tourists), but also forest microhabitat specialists (e.g. arboreal specialist species) that are not

adequately sampled by the adopted sampling methodology (Fig 3). In Madeira, 40% of the eval-

uated species were considered truly rare, with a slightly higher number of rare spider species

(S = 9) than ground beetles (S = 5). The rare ground beetles include the endemics Bradycellus
madeirensis, Zargus schaumii and three Trechus species (Table 3). Other endemic ground bee-

tles, like Olisthopus maderensis and Paradromius insularis, were not considered rare because

they are microhabitat specialists living under the bark of the trees and seldom being found at

the soil surface [63]. All the spiders classified as truly rare are also Madeira endemics and in-

clude Centromerus variegatus, Ceratinopsis acripes, Dipoenata longitarsis, Dysdera diversa, Fron-
tiphantes fulgurenotatus, Meta stridulans, two Lepthyphantes species and one undescribed

Macaroeris species (Table 3). Nearly a third of the evaluated spider species were classified as

pseudo-rare microhabitat specialists since they are associated with the vegetation/canopy,

where they are common, but are rarely found at ground level. This group of species includes,

for example, the endemic linyphiid Frontinellina dearmata and the native thomisid Misumena
spinifera. Finally, an observation worth highlighting is the absence of truly rare species and the

much higher proportion of tourist species in Terceira native forests in comparison with the

findings from the native laurel forests of Madeira (Fig 3).

Discussion

The comparative analysis of spider and ground beetle assemblages from Terceira and Madeira

native forests showed striking differences in species richness and composition between the two

islands, which to some extent relate to the differences in colonization history and species diver-

sification, but also reflect the intensity of the more recent human-mediated impacts on the

native forests. The archipelagos of the Azores and Madeira differ considerably in some

Table 4. Model selection results for the species abundance distributions.

Taxonomic group Island PLN Logseries

Ground beetles Terceira 72.56 67.16

Madeira 328.48 324.67

Spiders Terceira 188.62 187.69

Madeira 302.42 299.58

Goodness of fit and model selection results for the species abundance distributions of spiders and ground beetles

from the native forests of Terceira and Madeira islands. The Akaike’s information criterion corrected for small

sample size (AICc) is given for the two distributions—Logseries and Poisson lognormal (PLN)—and the model

representing the best fit is highlighted in bold.

https://doi.org/10.1371/journal.pone.0195492.t004
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geographical, geological and ecological attributes that are important determinants of the biodi-

versity of the islands [26, 28, 29]. In fact, the relatively recent origin of the Azorean islands,

Fig 2. Occupancy-frequency distributions (OFDs) for spiders and ground beetles from the native forests of Terceira and Madeira islands. Overall species richness

per occupancy class is shown in grey and the contribution of introduced species is highlighted in green. The mean and standard deviation of regional occupancy is shown

together with the overall species richness (S) and the number of sampling units (n). (A) OFD of Terceira ground beetles. (B) OFD of Madeira ground beetles. (C) OFD of

Terceira spiders. (D) OFD of Madeira spiders.

https://doi.org/10.1371/journal.pone.0195492.g002
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their large distance to potential colonization sources and the low habitat diversity have been

pointed out as the main drivers of the biodiversity observed in these islands [64]. Madeira is

characterised by a more complex geomorphology that has favoured allopatric diversification

events in some lineages [30], and due to its proximity to the paleoislands of the Canarian and

Madeiran volcanic provinces, island colonization by a stepping-stone process was certainly

eased [27]. Consequently, we expected to find a higher number of spider and ground beetle

species associated with native laurel forests in Madeira than in Terceira. The recent history of

the two archipelagos, following human colonization in the 15th century, is marked by severe

destruction and fragmentation of Azorean native forests while in Madeira some large pristine

forest patches have remained [26–28]. Our findings on the composition and structure of spider

and ground beetle assemblages reveal major differences in the severity of the impact of hu-

man-mediated changes between the two study islands, which can be inferred from the much

larger proportion of introduced species found in Terceira native forests. Further, notably for

ground beetles, SADs and OFDs are atypical and indicative of the severe disturbance effects on

Table 5. Modality of occupancy frequency distributions.

Taxonomic group Island Pc Pl Pr Distribution

Ground beetles Terceira <0.003 < 0.001 0.52 Unimodal

Ground beetles Madeira < 0.001 < 0.001 0.97 Unimodal

Spiders Terceira < 0.001 < 0.001 0.64 Unimodal

Spiders Madeira < 0.001 < 0.001 0.98 Unimodal

Tokeshi test results for the modality of occupancy frequency distributions on spider and ground-beetle data from Madeira and Terceira (Pc, Pl, and Pr represent the

results of the overall, left-, and right-most class modality tests, respectively).

https://doi.org/10.1371/journal.pone.0195492.t005

Fig 3. Evaluation of potential rare spider and ground beetle species from the native forests of Terceira and Madeira. Potential rare species (i.e. low-

abundance and range-restricted) were classified as tourists (red), microhabitat pseudo-rare species (green) and truly rare species (blue). The number of

evaluated species (n) from each island and study group is also shown.

https://doi.org/10.1371/journal.pone.0195492.g003
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species richness, abundance and distribution echoing dramatic species extinctions [15]. The

lack of intermediate abundance classes in Terceira SADs (Fig 1A), combined with the high

proportion of introduced species in most abundance classes (Fig 1C), is indicative of disturbed

communities, and clearly contrasts with the results from Madeira Laurisilva where native spe-

cies are dominant and introduced species are uncommon (Fig 1B and 1D). The high abun-

dance and occupancy of two introduced spiders in Madeira Laurisilva are an exception to this

pattern and the reasons for their ecological success merits further investigation. We hypothe-

size that these species may have benefited from the lower biophysical resistance in Madeira

Laurisilva (than in Terceira) since the structure of this forest is relatively similar to the habitat

structure of their areas of origin. Furthermore, human colonization of inland Madeira is more

ancient than in Terceira allowing more opportunities for these species to spread and the recent

effects of global warming, more evident in Madeira than Terceira, may have also benefited

their invasion. It is also important to stress that the invasion of Terceira Laurisilva by T. tenuis
is probably being prevented by its endemic congener T. miguelensis that remains abundant

and widespread in these forests while in Madeira Laurisilva no dominant native species seems

to share similar traits with T. tenuis. Thus, a trait-based approach will be critical to clarify the

reasons for the ecological dominance of these two introduced species in Madeira Laurisilva.

The patterns of SADs and OFDs of introduced species in Terceira match the ones found for

the native assemblages suggesting that introduced species are well integrated within natural for-

est communities, most probably as a consequence of the long history of disturbance events in

Azorean native forests [25]. It must also be emphasized that the young age and the isolation of

the Azorean islands resulted in unsaturated local communities which are thought to offer

greater opportunities for introduced species to spread and establish, especially when the natural

habitat is disturbed as in Terceira Island [65]. Therefore, the observed SADs of Terceira may be

the consequence of both historical and contemporary factors that render native forests more

vulnerable to the effects of species introductions on community structure and composition.

For both spiders and ground beetles, in both study islands, the best fitting SAD model was

the logseries (Table 4). However, these model comparisons do not clarify some of the differ-

ences in the observed SADs that were more apparent when comparing SAD plots and gam-

bin’s α values. For instance, the joint analysis of SADs (Fig 1) and gambin’s α values indicates

that, in Madeira, ground beetles have a much higher proportion of species in intermediate

abundance classes, whilst a larger proportion of spiders are low abundant species. Decon-

structing the assemblages allowed for further inferences to be made regarding the observed

SADs (Fig 1). For example, despite all SADs being best fit by the logseries model, and thus

being characterised by a relatively high number of singleton and doubleton species, further

analysis revealed that in Madeira most of these low abundant species are endemics, whilst in

the Azores the low and intermediate abundance species are often introduced species. Thus,

although classical SAD hypotheses would suggest that Terceiran and Madeiran assemblages

should be best fitted by different SAD models, due to differences in disturbance regimes

between the two islands, our results show that such hypotheses are not always applicable in

real world island systems [21]. Many island endemic invertebrate species are naturally present

in low numbers, and thus the SADs of these assemblages in low disturbed systems (e.g.

Madeira) are often characterised by more rare species than predicted by the logseries and eco-

logical theory. On the other hand, in highly disturbed systems (e.g. Terceira), the presence of

tourist species may inflate the number of species in low and intermediate abundance classes

and mask the loss of native forest species [66]. The species-poor bimodal SAD observed for

ground beetles in Terceira shows the consequences of previous extinctions of native forest spe-

cies [15, 25] which have resulted in an unbalanced community with a few dominant species

and several rare species. Indeed, previous research work on Azorean biodiversity has
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documented the role of human activities on the disturbance of native forests, the loss of native

species and the dominance of some introduced species in natural forests [15, 67, 68].

The observed discrepancy in the diversity patterns among ground beetles and spiders in

the native forests of Terceira seems to illustrate the differences in their vulnerability to distur-

bance. Nevertheless, the response of ground beetles and spiders to forest habitat disturbance is

species-specific and depends mostly on the degree of habitat specialization, but also on dis-

persal ability and hunting strategy. Many island native ground beetles are flightless species

with poor dispersal capacity, being less able to move away from the disturbed areas or even

escape from alien predators [69, 70]. Spiders, in general, have higher dispersal capability thr-

ough ballooning and their cryptic habitats may render them less susceptible to alien predators.

Furthermore, several studies highlight that specialist ground beetles are extremely vulnerable

to changes in microhabitat, particularly soil humidity, soil micro-topography, degree of can-

opy cover, leaf litter amount and the availability of decaying wood ([71, 72] and references

therein). Thus, the high number of reported local extinctions of forest specialist ground beetles

during the last decades as a consequence of human disturbance is not surprising (e.g. [72, 73]).

A recent study on the Azorean endemic beetle records concluded that at least seven species

went extinct since the first reliable species records from the Azores, nearly 150 years ago [15].

This study allowed a crude estimation of an extinction rate of 4.96 species/century in the

Azores just for endemic beetles, which is clearly indicative of the generalised and serious

human impact on native biodiversity since the second half of the 19th century. However, a

much higher number of species was certainly lost during the previous four centuries following

human colonization of the archipelago when more severe and extensive native habitat destruc-

tion took place (see [27, 74] and references therein). Scientific evidence of considerable ch-

anges in the biodiversity of the Azores (and to a less extent in Madeira) associated to human

colonization of the archipelago comes directly from several historical reports, pollen analysis

and studies on the fossil bird and land snail faunas, and indirectly from suspected extinctions

on specific arthropod genera [11, 67, 74–78].

The greater vulnerability to extinction of narrow-range specialist species at higher trophic

levels has been stressed in various empirical studies when assessing the effects of human

impact on ecosystems (e.g. [79–81]). For instance, several studies showed that forest specialist

ground beetles are virtually absent from disturbed or small forest patches where viable popula-

tions cannot persist, occurring exclusively in large undisturbed forest areas ([82] and refer-

ences therein). Furthermore, many forest specialist species lack functional wings (a common

feature in Azorean and Madeiran native forest endemics; see Table 3) making the possibility of

re-colonization of isolated forest patches after local extinction events very unlikely and render-

ing these species extremely vulnerable to alien predators and competitors [69, 70]. Actually,

most of the recently reported beetle extinctions in Azores are narrow-range flightless forest

specialists and some of the currently threatened terrestrial arthropods in Macaronesia share

these same characteristics [15].

The analysis of species rarity in groups of low-abundance range-restricted spiders and

ground beetles from the native laurel forests of Madeira and Terceira highlighted substantial

differences between the two study islands. The absence of rare native species coupled with the

presence of a high number of tourists (mostly introduced species) in Terceira’s laurel forests

suggests the past extirpation of populations of the most vulnerable native species. It is widely

recognized that low abundance and narrow distribution are drivers that predispose species to

extinction and both factors have already been associated with previous extinctions in a variety

of animal and plant taxa [7, 18, 79, 83]. However, of note was the finding that in Terceira’s for-

ests the loss of native species seems to have been balanced by the colonization of introduced

species from the neighbouring disturbed habitats. These introduced species are abundant in
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the surrounding matrix of deforested man-made habitats (dominated by pastures), have good

dispersal capacity (e.g. winged species) and may benefit from constant dispersal from dis-

turbed areas that is sufficient to maintain viable populations in the native forest [22]. Several

theoretical and empirical studies have shown that introduced species, even if they are inferior

competitors, may succeed in invaded habitats simply by benefiting from the susceptibility of

native species to habitat fragmentation and their lower ability to reinforce declining popula-

tions [79, 84, 85]. The homogenization of Azorean laurel forests due to the loss of rare native

species and the establishment of exotics is a serious conservation problem that needs further

research and the adoption of effective measures to halt biodiversity loss [66, 86]. The high lev-

els of extinction debt found in endemic forest-dependent species [25], particularly for beetles

and spiders, further highlights how acute this situation is, and the urgent need to implement

large-scale conservation efforts in the archipelago.

In contrast with the findings in Terceira, the potential rare species in Madeira Laurisilva are

largely true rare species (14 endemic species), but pseudo-rare microhabitat specialists (only

native species) are also well represented. The low presence of tourist species in Madeira Lauri-

silva, combined with the small number of introduced species, illustrates the favourable conser-

vation status of these forests. Nevertheless, it must be emphasized that Madeira Laurisilva has

also suffered a considerable destruction in the past which, in combination with invasive species

introductions, has led to the loss of some endemic species [11, 76, 77].

In conclusion, Madeira and the Azores have both been affected by human-mediated activi-

ties during the last few centuries which have altered the biodiversity in both islands. However,

our comparative study on the spider and ground beetle assemblages of native forests in Mad-

eira and Terceira has highlighted considerable differences in community structure and com-

position that mirror the differences in severity of human-induced changes between the two

islands. The high proportion of introduced species, the virtual absence of rare native species

and the finding that SADs and OFDs of introduced species match the pattern of native species

in Terceira reinforce the role of man as an important driver of species diversity in oceanic

islands, and provide additional evidence of the extensive and severe human-induced loss of

the indigenous diversity of Terceira native forests that cannot be fully understood based on the

current knowledge on species extinctions. The performance of comparative studies on the

community structure and composition of island arthropods addressing the relative contribu-

tion of true rare endemics and introduced species to island biodiversity patterns can be very

useful to evaluate the extent of species loss because “to neglect such extinctions is to ignore the

majority of species that are or were in need of conservation” [7].
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