
UC Merced
Frontiers of Biogeography

Title
Thresholds and the species–area relationship: a set of functions for fitting, evaluating and 
plotting a range of commonly used piecewise models in R

Permalink
https://escholarship.org/uc/item/8x3151xr

Journal
Frontiers of Biogeography, 0(0)

Authors
Matthews, Thomas J.
Rigal, François

Publication Date
2021

DOI
10.21425/F5FBG49404

License
https://creativecommons.org/licenses/by/4.0/ 4.0

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x3151xr
https://creativecommons.org/licenses/https://creativecommons.org/licenses/by/4.0//4.0
https://escholarship.org
http://www.cdlib.org/


Frontiers of Biogeography
the scientific journal of

the International Biogeography Society
Toolbox

© the authors, CC-BY 4.0 license  1

Frontiers of Biogeography 2021, 13.1, e49404

e-ISSN: 1948-6596 https://escholarship.org/uc/fb doi:10.21425/F5FBG49404

a

Thresholds and the species–area relationship: a set of functions for 
fitting, evaluating and plotting a range of commonly used piecewise 
models in R

Thomas J. Matthews1, 2  and François Rigal3,2 
1GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University 
of Birmingham, Birmingham, B15 2TT; 2CE3C – Centre for Ecology, Evolution and Environmental Changes/Azorean 
Biodiversity Group and Universidade. dos Açores – Depto de Ciências Agráriase Engenharia do Ambiente, PT-9700-042, 
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Highlights

•	 The possibility of thresholds in the species–area 
relationship (SAR) has long been recognized, but 
there are few software resources for fitting different 
kinds of threshold models to SAR data.

•	 Our functions allow users to fit a range of different 
one- and two-threshold piecewise regression models 
to SAR data, as well as providing tools to undertake 
a range of additional tasks, such as plotting model 
fits and comparing models using different criteria.

•	 These functions will allow authors interested in the 
SAR, and other types of diversity–area relationship, to 
test for thresholds in their data, ultimately expanding 
our understanding of how diversity scales with area.

Abstract

An increasing number of studies have focused on 
identifying thresholds in the species–area relationship 
(SAR). The most common approach in such studies is to 
use piecewise regression models. While a few software 
packages are available for fitting piecewise models, 
these resources are general regression packages (i.e., 
they are not specifically designed for the analysis of 
SAR data) and tend to only provide functions for fitting 
a subset of the piecewise models proposed in the SAR 
literature. Given the large number of SAR studies now 
fitting piecewise models, there is a need for a software 
package that provides functions for fitting a range of 
piecewise models, including continuous, left-horizontal 
and discontinuous models in addition to supplementary 
functions for analysing model fits, in the context of SAR 
data. To this end, we provide a set of functions for fitting 
six piecewise regression models to SAR data, calculating 
confidence intervals around the breakpoint estimates 
(for certain models), comparing the models using various 
information criteria, and plotting the resultant model 
fits. Here, we present these functions and illustrate them 
using a selection of empirical datasets. These functions 
are implemented in the freely available and open-source 
R package ‘sars.’

Introduction
The species–area relationship (SAR) describes the 

relationship between the number of species found in 
an area and the size of the area, and is a commonly 
studied diversity pattern in island biogeography and 
macroecology (Rosenzweig 1995, Triantis et al. 2012, 
Matthews et al. 2016, Chase et al. 2019). Various types 
of SAR have been described (see Scheiner 2003 for a 
detailed overview of the different types) and here we 

focus primarily on island species–area relationships 
(the number of species found on islands of different 
sizes; ISARs) for ease, but the functions described can 
be used with any type of SAR. An increasing number of 
studies have focused on identifying thresholds in the 
ISAR, including studies i) focused on identifying the 
small island effect (i.e., a different relationship between 
island area and species richness on smaller compared 
to larger islands ; SIE; Lomolino and Weiser 2001, Gao 

Keywords: species–area relationship, piecewise regression, threshold, breakpoint, diversity–area relationship, islands, 
small island effect
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and Perry 2016, Wang  et  al. 2018), ii) determining 
whether the ISAR has an upper asymptote (Lomolino 
2000), iii) looking for signals of speciation in the 
ISAR (Losos and Schluter 2000), and iv) identifying 
thresholds in habitat ISARs, which are often systems 
of conservation concern (Fahrig 2001, Matthews et al. 
2014). The most common approach in such studies is 
to use piecewise regression (e.g., Lomolino and Weiser 
2001, Toms and Lesperance 2003, Gentile and Argano 
2005, Matthews et al. 2014, Gao et al. 2019). Piecewise 
regression (also known as breakpoint regression, 
segmented regression, and broken-stick regression) 
models are those where the independent variable 
is broken up into segments and separate lines are 
fitted to each segment (Toms and Lesperance 2003). 
The values of the independent variable where the 
breaks occur are termed breakpoints and are often 
interpreted as thresholds in the relationship between 
the independent and dependent variables (e.g., Toms 
and Lesperance 2003, Matthews et al. 2014).

A wide range of piecewise models have been fitted 
to ISAR data, with Gao et al. (2019) providing functions 
for 14 different models. These can be broadly grouped 
into continuous models, where the slope of the line 
changes at a breakpoint (Fig. 1a), and discontinuous 
models (Fig. 1b), where both the slope and intercept 

of the line can change at the breakpoint (i.e., the 
lines are not continuous). Left-horizontal models are 
a subset of continuous models where the slope of the 
line to the left of the first breakpoint is zero (Fig. 1c). 
The slope of the line to the right of a breakpoint (in 
all piecewise models) can be steeper or shallower 
than the slope of the line to the left, leading to what 
have been termed shallow-steep and steep-shallow 
relationships, respectively (Matthews  et  al. 2014, 
Gao et al. 2019). Most work to date has focused on 
one-threshold (i.e., single breakpoint) piecewise models, 
but it has recently been suggested that the number of 
thresholds in the ISAR often increases with the range 
in island area analysed (Gao et al. 2019). For example, 
it has been argued that the ISAR exhibits both a SIE 
and a change in slope at large island areas where in 
situ speciation becomes a dominant assembly process 
(Losos and Schluter 2000, Lomolino and Weiser 2001).

Piecewise models can be fitted to untransformed 
ISAR data (i.e., where both richness and area 
are untransformed), data where only area is log-
transformed, and data where both richness and area 
are log-transformed. Different transformations can 
result in better model fits depending on the data 
(and models) at hand (Dengler 2009). However, the 
use or not of variable transformation has been found 

Figure 1. Schematic illustration of the six piecewise models implemented in our study, comprising three one-threshold 
models (a-c) and three two-threshold models (d-f). The models are the continuous one-threshold (a) and two-threshold 
(d), discontinuous one-threshold (b) and two-threshold (e), and left-horizontal one-threshold (c) and two-threshold (f) 
models. The models are presented using a semi-log transformation (area is log-transformed but species richness is not), 
but the models can also be fitted to untransformed or log–log transformed data.
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to affect the conclusions drawn in regard to whether 
or not a threshold is present in the ISAR (Burns et al. 
2009, Matthews et al. 2014), and is thus an important 
consideration in ISAR threshold studies.

A few software packages are available that enable 
users to fit piecewise regression models, including the 
‘SiZer’ (Sonderegger 2020) and ‘segmented’ (Muggeo 
2008) R packages, the latter being the most widely 
used package for fitting these types of models in 
the R language (R Core Team 2019). However, these 
resources are general regression packages (i.e., they 
are not specifically designed for the analysis of [I]SAR 
data) and tend to only provide functions for fitting a 
subset of the breakpoint models proposed in the ISAR 
literature. Given the large number of ISAR studies 
now fitting piecewise models, there is a need for a 
software package that provides functions for fitting 
a range of piecewise models (including continuous, 
left-horizontal and discontinuous models) in addition 
to supplementary functions for analysing model fits 
in the context of ISAR data. To this end, we provide 
a set of functions for fitting six piecewise regression 
models to ISAR data, calculating confidence intervals 
around the breakpoint estimates (for certain models), 
comparing the models using various information criteria, 
and plotting the resultant model fits. The framework 
and functions we present can also be easily adapted 
to fit additional threshold models (e.g., those with 
three breakpoints).

Models and model fitting
The six piecewise models included here (Fig.  1) 

are a selection of 6 models out of the 14 listed by 
Gao et al. (2019) and comprise the continuous one-
threshold (Eq. 1, Fig. 1a) and two-threshold (Eq. 2, 
Fig. 1d), discontinuous one-threshold (Eq. 3, Fig. 1b) 
and two-threshold (Eq. 4, Fig. 1e), and left-horizontal 
one-threshold (Eq. 5, Fig.  1c) and two-threshold 
(Eq. 6, Fig. 1f) models (see Gao et al. 2019 for further 
information). The equations of these six models are:

( ) ( ) ( )1 1 1 2S c logA T z logA logA T z T z logA T= + ≤ + > + −   	 (1)

( ) ( )
( ) ( ) ( )

1 1 1 1 2

1 1 2 1 2 2 2 1 3 2

S c logA T z logA logA T  &  logA T

z T z logA T (logA T ) z T T z logA T

= + ≤ + > ≤

+ − + > − + −      
	 (2)

( )( ) ( )( )1 1 2 2S logA T c z logA logA T c z logA= ≤ + + > + 	 (3)

( ) ( )
( ) ( )

1 1 1 1 2

2 2 2 3 3

S logA T (c z logA) logA T  &  logA T

c z logA (logA T ) c z logA

= ≤ + + > ≤

+ + > +
	 (4)

( ) ( )1 2S c logA T z logA T= + > −  	 (5)

( ) ( )
( ) ( )

1 1 2 2 1

2 2 2 1 3 2

S c logA T  &  logA T z logA T

(logA T ) z T T z logA T

= + > ≤ − +  
> − + −  

	 (6)

where logA is the log-transformed island area, and 
ci (intercept), zi (slope), and Ti (thresholds) are fitted 
parameters. The logical expressions (e.g., logA > T) 
return a value of 1 if they are true and a value of 0 if 

they are false. We have presented the equations using 
the semi-log transformation approach (area was log-
transformed but not species richness) but these models 
can also be fitted using either the untransformed or 
the log–log approach (Matthews et al. 2014).

Within the functions, the models are fitted using 
ordinary least squares regression (OLS) and the ‘lm’ 
function in R. The optimum threshold / breakpoint values 
are chosen by iterating across values and selecting those 
that result in the minimum residual sum of squares 
(RSS). For the continuous models (i.e., the continuous 
and left-horizontal one and two-threshold models), 
this iteration process works by selecting the smallest 
island area value as the first fitted threshold, and 
then adding an increment (set by the user; discussed 
below) at each iteration up to one increment below 
the maximum area value to avoid fitting models with 
no island in the right segment. For the discontinuous 
piecewise models, it does not make sense to choose 
values that are not observed area values as thresholds 
because segments are disconnected and doing so would 
leave a gap between the last island and the first island 
of two consecutive segments. Therefore, for these 
models, we simply used the full set of observed area 
values as the sequence of thresholds for fitting. As for 
continuous models, we did not include the maximum 
area value in the set of potential thresholds to avoid 
fitting models with no island in the right segment.

For the discontinuous models, the actual identified 
threshold (i.e., the value returned by the function) 
between two consecutive segments can be the area 
of either the last island of the first segment or the 
first island of the second segment. In our functions, 
we decided to report the value of the last island of 
the first segment as it represents the value after which 
another relationship between species richness and area 
is estimated. However, due to this issue the threshold 
values identified in the discontinuous models have to be 
interpreted with caution and cannot be fully compared 
to the thresholds of continuous models, the latter of 
which represent the predicted area where the slope 
of the relationship changes. For both the continuous 
and discontinuous models, the threshold values that 
result in the minimum RSS are chosen.

For the two-threshold models, the first breakpoint 
(T1) was estimated before the second (T2). With the 
discontinuous two-threshold model, the first breakpoint 
(T1) was first assigned to one of the observed area 
values, and the second breakpoint (T2) was then 
assigned to one of the observed area values between T1 
and the maximum observed area value (not including 
the max area value). T1 was then shifted to the next 
observed area value and the process repeated, and 
so on. With the continuous two-breakpoint models, 
for each value of T1, T2 was then assigned to all 
values between T1 and the maximum observed value 
(again, not including the max area), in units of the 
increment argument. T1 was then shifted according 
to the increment argument and the process repeated, 
and so on. In rare cases, multiple breakpoint values 
can return the same minimum RSS. In these cases, we 
just randomly choose and return one breakpoint value 
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(see Dengler et al. 2020) and also produce a warning. 
However, if this occurs, it is worth checking the data 
and model fits carefully as this tends to be a sign that 
the resultant model fit is poor and/or the dataset is 
noisy (i.e., there is no discernible ISAR).

Functions
All functions are written in R (R Core Team 2019) 

and are contained in the most recent version of the 
‘sars’ R package (version 1.3.0; Matthews et al. 2019), 
available on CRAN and GitHub (“txm676/sars”). In line 
with the rest of the ‘sars’ package, the functions have 
been programmed using standard S3 methods. The main 
function is ‘sar_threshold’, which fits the six piecewise 
models, in addition to a linear model and an intercept 
only model for comparison (using the ‘non_th_models’ 
argument). The ‘mod’ argument can be used to select 
individual piecewise models to be fitted, a selection of 
models, or all six models (‘All’). The ‘logAxes’ argument 
can be used to fit the models to untransformed data 
(‘logAxes’ = “none”) or log(Richness) ~ log(Area) data 
(‘logAxes’ = “both”); the default (Richness ~ log(Area) data; 
‘logAxes’ = “area”) fits models to semi-log transformed 
data, as this transformation is often used in ISAR threshold 
studies (e.g., Morrison 2014, Matthews et al. 2020). 
When richness is log-transformed, a constant (set using 
the ‘con’ argument, default = 1) is added to all richness 
values if any zeros are detected. Other alternatives 
(e.g., removing all zero species islands or only adding 
constants to the zero species islands) would need to 
be undertaken by the user prior to using the function. 
The log-function used can be selected using the ‘logT’ 
argument with logT = “log” for natural logarithms 
(the default setting), logT = “log2” for log to the base 
2, and logT = “log10” for log to the base 10. The ‘nisl’ 
argument can be used to constrain the minimum of 
number of islands that should be included in the first 
and last segment. This argument was added to the 
function because we observed that, in a small number 
of cases, thresholds that result in only one island being 
present in the first or last segment can be identified. 
Constraining the number of islands could therefore be 
useful to avoid such situations and thus reduce the risk 
of returning model fits with questionable ecological 
meaning. By default, the argument is set to NULL, and if 
the user selects a minimum of number of islands that is 
equal or larger than half of the total number of islands, 
the functions stop and a warning message is returned.

For the continuous and left-horizontal models, an 
important part of the model fitting process is selecting 
a suitable value (using the ‘interval’ argument) for 
incrementing the threshold during the iterative fitting 
procedure. The defaults used in ‘sar_threshold’ are 
different depending on whether untransformed or 
log-transformed area is used as the independent 
variable. For untransformed area, the default ‘interval’ 
is 1, while for log-transformed area it is 0.1. However, 
depending on the range of island areas in a given 
dataset, these defaults may not be appropriate; for 
example, when ‘interval’ is too large (relative to the 
size of the smallest island in a dataset), it can result in 
a single data point being included within one or more 
of the model segments (discussed above). It can also 

bias the confidence intervals (discussed below) of the 
one-threshold continuous models downwards. Thus, 
users are advised to select their own ‘interval’ values 
given their data. As discussed above, the observed area 
values are used to select the optimal breakpoint in the 
discontinuous models, and thus the ‘interval’ argument 
is not relevant in these cases. If the selected interval 
is small (relative to the range of observed island area), 
fitting the continuous and left-horizontal models can be 
relatively time consuming; however, we would argue 
that it is better to select a smaller interval argument 
(and thus take longer in fitting the models) and be more 
confident that the optimum breakpoint has been found. 
Fitting the continuous and left-horizontal two-threshold 
models can be particularly time consuming if the range in 
area is large and/or the selected interval is small. To deal 
with this, we have integrated parallel processing into the 
fitting process for these two-threshold models, which 
can be set using the ‘parallel’ and ‘cores’ arguments. 
While the default for ‘parallel’ is set to FALSE (as parallel 
processing may not be appropriate for all users), we 
advise its use when fitting the two-threshold models.

More generally, due to the increased number of 
parameters, fitting piecewise models to datasets with 
few islands is not recommended. In particular, we 
would advise against fitting the two-threshold models 
to small SAR datasets. A rough rule of thumb would be 
to not fit one-threshold models to datasets with fewer 
than 10 islands and two-threshold models to datasets 
with fewer than 20 islands. However, it should be 
noted that a recent study has argued that a minimum 
sample size of at least 25 islands is required for fitting 
even simple linear SAR models (i.e., models with no 
thresholds) when there is high variance in the data 
(Jenkins and Quintana-Ascencio 2020). This leads on 
to a more general point that all threshold model fits 
(as with any regression model fit) should be checked 
carefully, the fitted relationship plotted and different 
parameter settings tested (e.g., the interval arguments).
#load an example dataset, and fit the continuous 
#two-threshold model
#to the data (with area transformed using log to the 
#base 10), using an interval of 0.1 (for 
#speed) and parallel processing. Plot the resultant 
#model fit (plotting discussed in more detail 
#below).
library(sars)
data(aegean2)
fit <- sar_threshold(data = aegean2, mod = c(“ContTwo”), 
interval = 0.1,

non_th_models = FALSE, logAxes = “area”, con = 1,
logT = log10, nisl = NULL, parallel = TRUE, cores = 3)

plot(fit, cex = 0.8, cex.main = 1.1, cex.lab = 1.1, pcol 
= ‘grey’) #Figure 1

The ‘sar_threshold’ function returns a list of class 
‘threshold’ and class ‘sars’ with five elements, containing 
various details about the model fitting procedure. The 
individual model fit objects (returned from the ‘lm’ 
function) are provided in the first element. These ‘lm’ fit 
objects can be used to generate classic diagnostic plots 
for linear regression using the standard ‘plot’ function 
(e.g., QQ-plot, Cook’s distance). This is recommended as 
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there are no automatic model validation tests undertaken 
within the sar_threshold function. Summary and plot 
generic functions are available which return user-friendly 
output. The ‘summary.sars’ generic function (when 
applied to an item of class ‘threshold’) generates a list 
with three elements, where the second element is a 
model summary table. The table provides, for each fitted 
model, a range of useful information, including AIC, 
BIC and AICc values, the model R2 and adjusted R2, the 
threshold / breakpoint values, and the number of data 
points in each fitted segment. Models are ordered in 
the table according to a selected information criterion. 
Table 1 provides an example model summary table. 
Because we considered the search for the breakpoint 
to represent a free parameter (cf. Matthews et al. 
2014), we added one unit per threshold to the original 
number of model parameters in the piecewise models, 
increasing the number of model parameters to k=4 for 
the left-horizontal one-threshold model, k=5 for the 
continuous one-threshold, k=6 for the discontinuous 
one-threshold and left-horizontal two-threshold models, 
k=7 for the continuous two-threshold model, and k=9 
for the discontinuous two-threshold model. These 
parameter numbers are then used in the calculation 
of the various information criteria.
#fit all six piecewise models to the aegean2 dataset, 
#along with the linear and intercept-only 
#models, using parallel processing for the two-threshold 
#continuous models, and generate a 
#summary table (Table 1) where models are ordered 
#by BIC. Note that the number of cores to 
#select depends on the specific computer being used
fit2 <- sar_threshold(data = aegean2, mod = “All”, 
interval = 0.1, nisl = NULL, non_th_models = TRUE, 
logAxes = “area”, logT = log10, parallel = TRUE, cores = 4)
s <- summary(fit2, order = “BIC”)
s[[2]] #Table 1

As the coefficients in the fitted breakpoint regression 
models do not all represent the intercepts and slopes 

of the different segments (for these it is necessary 
to add different coefficients together), a separate 
function (‘get_coef’) can be used to calculate these. 
Table 2 provides an example of this output.

#load a dataset of invertebrates on 90 Aegean islands, 
#fit four piecewise models to the 
#dataset (and not the intercept-only and linear models) 
#using parallel processing (for the two 
#threshold models) and log-transformed area and 
#richness, and generate the intercept and 
#slope values from the model fits (Table 2) 

data(aegean)
fit3 <- sar_threshold(data = aegean, mod = c(“ContOne”, 
“ContTwo”, “ZslopeOne”, “ZslopeTwo”), interval = 
0.1, non_th_models = FALSE, logAxes = “both”, logT 
= log10, parallel = TRUE, cores = 3)
get_coef(fit3) #intercept and slope values (Table 2)

Table 1. Model summary table, generated using the ‘summary.sars’ generic function. The table provides information 
about the fit of six piecewise models, in addition to linear and intercept-only models. See the legend of Fig.2 for dataset 
information. “Zslope” models are the left-horizontal models, “Cont” are the continuous models, and “Disc” are the 
discontinuous models; the numbers (“One” or “Two”) relate to the number of thresholds in the model. LL is the log 
likelihood of the model and Pars is the number of parameters. The R2 and R2a are the model R2 and adjusted R2 values. 
Th1 and Th2 are the log10 threshold value(s), and seg1, seg2, seg3 provide the number of data points within each segment 
(for the threshold models). Note that in the function output, the dashes are actually NAs.

Model LL Pars AIC AICc BIC R2 R2a Th1 Th2 seg1 seg2 seg3
ZslopeTwo -1004.13 6 2020.25 2020.76 2039.17 0.95 0.95 -0.22 1.48 86 37 50
ContTwo -1002.74 7 2019.48 2020.16 2041.55 0.95 0.95 -0.12 1.48 86 37 50
DiscTwo -1002.21 9 2022.42 2023.52 2050.80 0.95 0.95 0.16 1.69 88 46 39
ContOne -1017.97 5 2045.94 2046.30 2061.71 0.94 0.94 0.98 - 105 68 -
DiscOne -1017.89 6 2047.78 2048.28 2066.70 0.94 0.94 0.96 - 104 69 -
ZslopeOne -1026.85 4 2061.70 2061.94 2074.31 0.94 0.94 0.58 - 94 79 -
Linear -1149.52 3 2305.05 2305.19 2314.51 0.74 0.74 - - - - -
Intercept -1265.92 2 2535.84 2535.91 2542.14 0.00 0.00 - - - - -

Figure 2. The fit (red lines) of the continuous two-slope 
piecewise model (Eq. 2, above) to a dataset of plants on 
173 islands (black circles) in the Aegean Sea. Island area 
was log-transformed (using log10) prior to model fitting.
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A ‘plot.threshold’ generic function uses the base R 
plotting framework and allows users to plot individual 
model fits, or a collection of fits in the same plotting 
window (e.g., Fig. 3). Standard plotting arguments 
(e.g., to change point and line size, point and line 
colours, plotting window dimensions, and axes and 
plot titles) enable users to edit most aspects of the 
plots.

#Plot the fit object from above (Table 1), and change 
#the x-axis name, provide a vector of 
#model titles, and set the line and point colour
par(mai = c(0.6, 0.6, 0.3, 0.3)) #change the graph margins
plot(fit2, xlab = “Area (Log10)”, ModTitle = c(“a) 
ContOne”, “b) ZslopeOne”, “c) DiscOne”, “d) ContTwo”, 
“e) ZslopeTwo”, “f) DiscTwo”, “g) Linear”, “h) Intercept”), 
pcol = “grey”, lcol = “orange”)

Table 2. The intercepts (ci) and slopes (zi) of the different segments in four piecewise regression models fitted to a dataset 
of invertebrates on 90 islands in the Aegean Sea. Both area and richness were log-transformed prior to model fitting. 
Dashes indicate a parameter is not in a given model. Note that in the function output, the dashes are actually NAs.

Model c1 z1 c2 z2 c3 z3
ContOne 0.70 0.13 - 0.27 - -
ZslopeOne 0.53 - - 0.26 - -
ContTwo 0.66 0.10 - 0.51 - 0.23
ZslopeTwo 0.37 - - 0.13 - 0.27

Figure 3. The fits (orange lines) of six piecewise models, a linear model and an intercept-only model to a dataset of plants 
on 173 islands (grey circles) in the Aegean Sea. Island area was log-transformed (using log10) prior to model fitting. Table 1 
provides information about the fit of the six piecewise models (a-f) including information criteria and R2, in addition to 
the linear (g) and intercept-only (h) models.
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A separate function (‘threshold_ci’) generates the 
confidence intervals around the breakpoints of the 
one-threshold continuous and left-horizontal models. 
Two types of confidence interval can be implemented 
(using the ‘method’ argument): (1) a confidence interval 
derived from an inverted F test (‘method’ = “F”), and (2) 
an empirical bootstrap confidence interval (‘method’ = 
“boot”). Full details of the two approaches can be found 
in Toms and Lesperance (2003). The argument ‘cl’ can 
be used to select the confidence level, and the level is 
set to 0.95 (95%) by default. When the bootstrapping 
method is selected, all bootstrap samples are returned. 
It should be noted that, depending on the number 
of bootstrap samples selected and the interval value 
chosen, the function can take a (very) long time to 
run. On the other hand, if the selected interval is too 
large, every estimated bootstrap value will simply be 
the same as the fitted value and the confidence interval 
will be zero. Following Toms and Lesperance (2003), 
we therefore recommend the use of the inverted F 
test confidence interval when sample size is large, 
and bootstrapped confidence intervals when sample 
size is smaller. As the breakpoints in discontinuous 
models can only be observed area values, these two 
methods are not applicable for these models. Further 
work is needed to extend these approaches to the 
two-threshold continuous models.
#fit the one-threshold left-horizontal model to the 
#aegean2 dataset and generate the 95% 
#confidence interval around the breakpoint estimate 
#using bootstrapping (100 bootstrap 
#samples) and the same interval argument as in the 
#model fit
fit4 <- sar_threshold(data = aegean2, mod = 
c(“ZslopeOne”), interval = 0.1, non_th_models = FALSE, 
logAxes = “area”, logT = log10)
fit4[[3]] #print the breakpoint (n.b. is on log10 area scale)
[1] 0.5781513
threshold_ci(fit4, method = ‘boot ‘, interval = 0.1, 
Nboot = 100) 
Threshold confidence interval summary
Model: ZslopeOne
Confidence interval of the breakpoint: 0.48 - 0.68 

A warning on the use of discontinuous models
It is necessary to mention that several authors 

have cautioned the use of discontinuous piecewise 
functions for modelling SARs. There are two points 
in particular that are worth highlighting here. First, 
studies have recently questioned the ecological logic 
of discontinuous relationships (e.g., Yu et al. 2020), 
arguing that the modelling of macro scale processes 
in nature using discontinuous models is inappropriate 
(Dengler 2010). Indeed, discontinuous relationships 
could reflect the absence of confounding factors 
(variables) that were not included in the models (e.g., 
isolation) rather than a true mechanistic link between 
species richness and area. Second, through testing the 
models and working with piecewise models in previous 
work, we have observed potential overfitting issues 

in relation to discontinuous models, even when more 
stringent model selection criteria, such as BIC, are 
used. Future research on this issue is needed. Despite 
these issues, given that several studies continue to fit 
discontinuous models, we decided it was preferable 
to provide the functions to fit these models and let 
authors decide on their utility.

Conclusions
It is worth re-emphasising that, in certain circumstances 

(e.g., large datasets), the various functions can take 
a while to run. Overall, our approach of iterating 
across different potential threshold values using 
the ‘interval’ argument is slower than, for example, 
simply using non-linear least squares and the ‘nls’ R 
package. However, if ‘interval’ is sufficiently small, the 
approach has the advantage of undertaking a more 
comprehensive search of parameter space, providing 
a greater chance of locating the optimum parameter 
estimates for any type of dataset. The use of ‘nls’ in 
particular is very sensitive to the (required) user-provided 
starting parameter estimates. If a user wants to reduce 
computation time when using the functions, we have 
three recommendations. First, increase the ‘interval’ 
argument, although it is important to remember 
that there is a trade-off between the accuracy of 
the breakpoint estimation and the computing time. 
Second, use parallel processing (i.e., set the ‘parallel’ 
argument to TRUE and specify the number of cores 
to use) if fitting the two-threshold continuous and 
left-horizontal models. Third, if calculating confidence 
intervals around the threshold estimate, use an inverted 
F test confidence interval when sample size is large.

The functions outlined here provide a set of tools 
for fitting, evaluating, and plotting a range of commonly 
used piecewise models in ISAR threshold research. 
Whilst the six piecewise models included in the package 
represent some of the most commonly used models 
(e.g., Lomolino and Weiser 2001, Matthews  et  al. 
2014, 2020, Gao and Perry 2016, Wang et al. 2018), 
they are by no means the only models with thresholds 
that have been used in ISAR studies (see Toms and 
Lesperance 2003, Gao et al. 2019). However, using 
the source code, it would be relatively straightforward 
to add additional piecewise models into this fitting 
framework, and interested users are welcome to 
contribute code for fitting any models not included 
here (e.g., through GitHub).

While the focus of this paper has been on ISAR data 
(i.e., where the response variable represents the number 
of species), there is no reason these functions cannot 
be used to fit piecewise models to other diversity–area 
relationships, including island functional diversity–area 
relationships (Whittaker et al. 2014) and phylogenetic 
diversity–area relationships (Helmus and Ives 2012). 
Indeed, a number of recent studies have explored the 
small island effect in plants using breakpoint models in 
combination with island functional and phylogenetic 
diversity (Schrader et al. 2020, Matthews et al. 2020). 
Expansion of the approaches in these studies to a 
wider range of systems and taxonomic groups will 
likely increase our understanding of the mechanisms 
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underpinning the small island effect. The functions 
provided here should aid these future endeavours, 
and the investigation of thresholds in diversity–area 
relationships more generally.

A final point on the calculation of information 
criteria

Piecewise models are not the only approach that 
have been proposed for testing for the presence of 
thresholds (e.g., the SIE) in the ISAR and users might 
want to compare the performance of our 6 models to 
other functions, such as sigmoidal models (Schrader et al. 
2019, Tjørve and Tjørve in press; the ‘sars’ package 
provides functions for fitting several sigmoid models 
to SAR data, see Matthews et al. 2019). In this vein, we 
would like to highlight a specific issue inherent to model 
comparison and selection. There are different ways 
to calculate the various information criteria (IC) used 
for model comparison (e.g., AIC, BIC). One difference 
relates to whether the RSS or the log-likelihood (LL) is 
used in the IC formulas. Under standard assumptions 
(e.g., independence of data points, homoscedasticity 
and normality of the residuals), the two approaches 
produce identical parameter estimates for regression 
models. However, the formulas are different and thus 
can produce different absolute IC values for the same 
model. For example, historically in the ‘sars’ package we 
have calculated IC values using formulas based on the 
RSS (Burnham and Anderson 2002, Guilhaumon et al. 
2008). This meant that the IC values generated in 
‘sars’ were not comparable with values generated in 
packages using different formulas. For example, in 
the ‘nls’ (the main function for non-linear regression 
in R) and ‘lm’ functions in the stats R package, a LL 
approach is used, meaning IC values from models fitted 
using ‘nls’ could not be compared with IC values from 
‘sars’ models. To re-iterate, the parameter estimates 
are comparable, and the relative IC values (calculated 
using the same formula) are the same, it is simply that 
the absolute IC values will differ. In this new version 
of the package (version 1.3) we have changed our IC 
formulas to match those in ‘nls’ and ‘lm’. Thus, if users 
wish to compare IC values with models fitted in ‘sars’, 
this is now straightforward. To re-create IC values 
from previous studies (i.e., those using a version of 
sars pre 1.2.2), it will be necessary to download ‘sars’ 
Version 1.2.1 or earlier (either from CRAN or GitHub; 
version 1.1.1 was published as a release on GitHub). 
It is important to note that these are not the only two 
ways of calculating ICs for regression models, and other 
formulas exist. Thus, if building models using other 
functions and packages (i.e., other than ‘nls’ or ‘lm’), 
users should make sure to check how these packages 
calculate IC values before comparing with models fitted 
in ‘sars’. In ‘sars’, as in ‘nls’, we include an additional 
parameter for estimation of the variance. Finally, if 
users are comparing models fitted in the package 
with their own models fitted using other packages, it 
is essential that IC values are all calculated using the 
same dependent variable (e.g., untransformed richness 
when using ‘sar_average’, and either untransformed or 
log-transformed richness when using ‘sar_threshold’).
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